REMARKS ON SOME ALGEBRAIC GROUPS

B. Yu. Veisfeiler

Let \(k \) be a field, \(\text{char} k \neq 2 \), \(K \) a quadratic extension of the field, and \(G \) a semisimple algebraic group which is defined over \(k \) and decomposable over \(K \). A maximum torus \(T \subset G \) is said to be allowed if it is defined over \(k \), anisotropic over \(k \), and decomposable over \(K \). Let \(\Sigma \) be a system of roots in \(G \) relative to \(T \); if \(\alpha \in \Sigma \), we shall denote by \(G_\alpha \) a three-dimensional simple subgroup generated by the root subgroups \(N_\alpha \) and \(N_{-\alpha} \), and normalizable by the torus \(T \). The Galois group \(\Gamma(K/k) =\{1, \sigma\} \) acts on the group of characters \(X(T) \) of the allowed torus \(T \).

Lemma. Let \(T \) be an allowed torus in \(G \). Hence a) \(\sigma \alpha = -\alpha, \forall \alpha \in X(T) \); b) the subgroups \(G_\alpha, \alpha \in \Sigma \) are defined over \(k \).

To the subgroups \(G_\alpha \) it is possible to assign central quaternion algebras \(D_\alpha \). We shall denote by \(\text{Nrd} \) a homomorphism of a reduced norm of the algebra \(D_\alpha \) into its center. The algebras \(D_\alpha \) are cyclic algebras; \(D_\alpha = (K, \lambda_\alpha), \lambda_\alpha \in k^* \text{mod } NK/k(K^*) \); in this case we shall say that the group \(G \) represents an array \(\{\lambda_\alpha\}_{\alpha \in \Sigma} \) with respect to the torus \(T \). The principal question of interest to us is as follows: How is it possible to distinguish arrays that are represented by the group \(G \) with respect to two distinct allowed tori?

An allowed torus \(T' \) is said to be associated with respect to \(\alpha \in \Sigma \) to the torus \(T \) if \(T' \subset G_\alpha T \), where \(\alpha \in \Sigma, \text{rg}_K G_\alpha = 0 \). It is easy to prove the following result:

Theorem. If \(\text{rg}_K G = 0 \), the group \(G \) will contain allowed tori and any two allowed tori can be obtained from each other by a finite number of transitions to associated tori.

By a simple analysis of type-\(A_1 \) groups it is possible to obtain

Proposition 1. If an allowed torus \(T' \) is associated with an allowed torus \(T \) with respect to \(\beta \in \Sigma \) and the group \(G \) represents the arrays \(\{\lambda_\alpha\} \) and \(\{\lambda'_\alpha\} \) with respect to the tori \(T \) and \(T' \), then \(\lambda_\alpha = \nu^{[\alpha, \beta]} \cdot \lambda_{\beta} \), \(\lambda_\alpha \), where \(\nu \in \text{Nrd} D_{\beta,k} \). Conversely, if \(\nu \in \text{Nrd} D_{\beta,k} \), then the arrays \(\lambda_\alpha \) and \(\nu^{[\alpha, \beta]} \cdot \lambda_{\alpha} \) will be represented by the group \(G \) with respect to associated tori; \([\alpha, \beta] = 2(\alpha, \beta) - (\beta, \beta)^{-1} \).

We can also prove

Proposition 2. If \(\text{rg}_K G > 0 \) and the group \(G \) contains an allowed torus, then it will contain an allowed torus \(T \) such that \(\lambda_\alpha \in NK/k(K^*) \) for at least one \(\alpha \in \Sigma \) (i.e., the group \(G_\alpha \) is decomposable).

Over special fields it is possible to obtain with the aid of our results interesting corollaries.

Corollary 1. If \(\text{Nrd} D_k = k \) for any central quaternion algebra \(D/k \) and \(\text{rg}_K G = 0 \), then \(G \) will be of type \(A_1 \).

This is a direct consequence of Proposition 1.

Corollary 2. If \(\text{Nrd} D_k = NK/k(K) \) for any algebra \(D = (K, \lambda), \lambda \in k^* \), and \(\text{rg}_K G = 0 \), then any two allowed tori will be conjugate in \(G_k \).
Indeed, by virtue of our condition the properties of associativity with respect to \(\alpha \in \Sigma \) and conjugateness in \(G_{\alpha, k} \) coincide. Our assertion follows from the theorem. Let us note that the field of real numbers satisfies our conditions; therefore, Corollary 2 is a generalization of E. Cartan's well-known theorem on the conjugateness of maximum tori in a compact Lie group.

It is also possible to prove the following simple result:

PROPOSITION 3. If \(T \) and \(T' \) are two allowed tori in \(G \) and the group \(G \) represents with respect to \(T \) and \(T' \) the same arrays, then the tori \(T \) and \(T' \) will be conjugate in the group \((\text{Aut} \ G)_k\).

Results, similar to those presented above, can be obtained for groups containing maximum tori that are defined over \(k \) and decomposable over a Galois extension of the Galois group \(Z_p \).

The author expresses his gratitude to E. B. Vinberg and D. A. Kazhdan for their interest and valuable remarks.