THE HASSE PRINCIPLE FOR ALGEBRAIC GROUPS
SPLIT OVER A QUADRATIC EXTENSION

B. Yu. Veisfeiler

At the present time the Hasse principle is known to be valid for the majority of algebraic groups. However, its proof [1] makes use of the classification of algebraic groups. In this paper it will be shown that for groups which are split over a quadratic extension, the Hasse principle is a result of the strong approximation theorem for split groups and the Hasse principle for quaternions. We shall essentially use the approach given in [3, 4]. Let \(k \) be a field of algebraic numbers; \(K \) a quadratic extension, \(\sigma \in \Gamma (K / k) \), \(\sigma \neq 1 \), \(R \) (respectively, \(R_a \)), the set of all valuations of \(k \) (respectively, Archimedian valuations of \(k \)). Furthermore, let \(U_r \) denote the identity of the field \(k_r (r \in R) \), \(R' = \{ r \in R : K_r = k_r \oplus k_r \}, R'' = \{ r \in R : K_r \) is a field\}, \(R_0 = \{ r \in R'' : K_r / k_r \) is unramified\}. Let \(G \) be a semisimple simply connected algebraic group defined over \(k \) and split over \(K \). As in [3, 4], we call a maximal subtorus in \(G \) "admissible" if it is defined and is anisotropic over \(k \) and split over \(K \). Let \(\{ \lambda_a \}_{a \in \mathbb{Z}}, \lambda_a \equiv k^* \mod N (K^*) \), denote the set being represented by the group \(G \) with respect to the admissible torus \(T \). Let \(R (T, a) = \{ r \in R : \lambda_a \notin N (K_r) \}, R (T) = \bigcup R (T, a) \), and let \(N \) denote the norm from \(K \) to \(k \), and from \(K_r \) to \(k_r \).

Definition. Let \(G, H \) be semisimple algebraic groups over \(k \), and for each \(r \in R \) let there be given a \(k_r \)-isomorphism \(\varphi_r : G \rightarrow H \). We call the system \(\{ \varphi_r \}_{r \in R} \) "consistent" if for any class of parabolic subgroups \(\mathcal{P} \) in \(G \) and \(\mathcal{P}' \) in \(H \)

\[
\exists r \in R : \varphi_r (\mathcal{P}) = \mathcal{P}' \Rightarrow \psi_r (\mathcal{P}) = \mathcal{P}' \quad \forall r \in R.
\]

(If \(H = G \) and \(\mathcal{P} = \mathcal{P}' \), then the expression "system of consistent isomorphisms" is synonymous with the expression "system of inner automorphisms."

Let \(T_r \) denote \(k_r \)-tori in \(G \) and let \(\Delta_r = \{ a_n, \ldots, a_1 \} \) be an ordered system of simple roots in the root system of the group \(G \) with respect to \(T_r \). We say that the system \(\Delta_r \) is "consistent" if for all \(i \in [1, n] \) there exists a class \(\mathcal{P}_i \) of maximal parabolic subgroups in \(G \) such that in all \(\Delta_r \) the root \(\alpha_i, r \) corresponds to the class \(\mathcal{P}_i \).

THEOREM. Let \(R \subset R'', R \supset R (T) \cup (R'' \setminus R_a) \cup R_a, |R| < \infty \). Let the group \(G \) be anisotropic over \(k \), and let \(T_r, r \notin R, \) be an admissible \(k_r \)-torus in \(G \). Let \(\Delta_r \) be consistent systems of simple roots of \(G \) with respect to \(T_r \), and let \(\{ \lambda_a \}_{a \in \mathbb{Z}} \) be a set represented by the group \(G \) with respect to the torus \(T_r \) (over \(k_r \)). Then there exists an admissible \(k \)-torus \(T' \) and a system of simple roots \(\Delta' \) with respect to \(T' \) satisfying the conditions:

a) \(\Delta' = \{ \alpha' \}, \ldots, \alpha_n \} \) is consistent with \(\Delta_r \) for all \(r \notin R; \)

b) if \(\{ \lambda_a \}_{a \in \mathbb{Z}} \) is a set represented by the group \(G \) with respect to \(T' \), then \(\forall i \in [1, n] \) we have \(\lambda_i, r \subseteq \lambda, r \cdot N (K_r), \forall r \in R \) and \(\lambda_i, r \subseteq N (K_r), \forall r \in R \setminus R \)

COROLLARY 1. If \(G \) is a semisimple algebraic \(k \)-group split over \(K \), and \(r_g k r \) \(G > 0 \) for all \(r \in R \), then \(r_g k \) \(G > 0 \).

COROLLARY 2. If \(\tilde{G} \) is an admissible algebraic group over \(k \), and \(\{ \varphi_r : \tilde{G} \rightarrow G \}_{r \in R} \) is a consistent system of isomorphisms, then \(G \) and \(\tilde{G} \) are isomorphic over \(k \).
Proof of the Theorem. Let \(u_\alpha(t) \) and \(u_{\alpha',r}(t) \) be root subgroups with respect to the tori \(T \) and \(T_r \), respectively, with parameters \(t \) normalized as in [4] (pt. 3).

Lemma. There exists \(g \in G_{K_T} \) such that \(g u_\alpha(t) g^{-1} = u_{\alpha',r}(t) \).

There exists an \(m \in (\text{Aut } G)_{K_T} \) such that \(m(u_\alpha(t)) = u_{\alpha',r}(t) \). Since the systems \(\Delta_r \) are consistent, then, varying the numbering of the roots in \(\Delta \), we may suppose that \(m \) is an inner automorphism. Let \(M \) be a subgroup in \((\text{ad } G)_{K_T} \) generated by the unipotent elements, and let \(D \) be the centralizer of the torus \(T_r \) in \((\text{ad } G)_{K_T} \). Then \([2] (\text{ad } G)_{K_T} = D \cdot M \), \(m = d \cdot m', d \in D, m' \in M \). The substitution of \(u_{\alpha',r}(t) \) for \(d^{-1}(u_{\alpha',r}(t)) \) corresponds to the substitution of the parameter \(t \). Having made this substitution we may assume that \(m \in M \). Since \(M \) is the unipotent part of \(G_{K_T} \), and since the substitutions which were made do not alter the conditions of the theorem, the lemma is proved.

Let \(B \) and \(B_r \) be Borel subgroups in \(G \) generated by the tori \(T \) and \(T_r \) and by the subgroups \(u_\alpha(t) \), \(\alpha \in \Delta \), and \(u_{\alpha',r}(t) \), \(\alpha \in \Delta_r \), respectively (\(r \in R \)). Let \(q \in R' \) be fixed, and let \(A_K(q) \) denote the adèlle product of the algebras \(K_r \) over all \(r \in R \setminus \{q\} \).

Now we take \(g = (g_r) \in G_{A_K(q)} \), \(g = 1 \) for all \(r \in R \setminus \{q\} \), \(g u_\alpha(t) g^{-1} = u_{\alpha',r}(t) \) for \(r \in \overline{R} \). Let \(T' = (T'_r) \) be an "\(A_K(q)\)-torus" in \(G \), where \(T_r' = T_r \) for \(r \in R \setminus \{q\} \), \(T'_r = T_r \) for \(r \in \overline{R} \). We define the "root subgroups" \(u_\alpha(t) \) and the "sets" \(\{\gamma_r\} \) analogously.

From the strong approximation theorem for \(G \) (over \(K \)), we may choose \(h \in G_K \) arbitrarily close to \(g \) in the topology of the group \(G_{A_K(q)} \). Let \(T' = hBh^{-1} \cap (hBh^{-1})_p \). Since \(T = B \cap B_r \), \(T_r = B_r \cap B_r' \), \(r \in \overline{R} \), the torus \(T' \) may be taken to be arbitrarily close to the torus \(T'' \). There exists an \(n \in U_K \) (the unipotent portion of the group \(B_k \)) such that \(T' = h(nTn^{-1})h^{-1} \). Since the tori \(hT'h^{-1} \) and \(T' \) are close, \(n \) is close to unity, and therefore, replacing \(h \) by \(hn \) if necessary, we obtain \(T' = hT'h^{-1} \).

Let \(u_\alpha'(t) = hu_\alpha(h^{-1}) \). We have

\[
\begin{align*}
 u_\alpha'(t) & = u_\alpha(h^{-1}t) = u_\alpha(t') \cdot u_\alpha(t'') \\
 u_{\alpha',r'}(t) & = u_{\alpha',r'}(t') = u_{\alpha',r'}(t'')
\end{align*}
\]

Since \(\sigma \) is a continuous operator, the closeness of \(u_\alpha'(t) \) and \(u_\alpha''(t) \) follows from the closeness of \(u_\alpha(t) \) and \(u_\alpha'(t) \). Choosing \(h \), we can say that \(\lambda_\alpha \) is arbitrarily close to \(\lambda_\alpha' \) and \(\lambda_\alpha'' \) is arbitrarily close to \(\lambda_\alpha'' \). This means that \(\lambda_\alpha \lambda_\alpha'^{-1} \) is arbitrarily close to \(1 \). We have \(\lambda_\alpha \lambda_\alpha'^{-1} \subseteq U_r \subseteq N(K_r) \) for all \(r \in R \setminus \{q\} \), \(r \in R' \). For \(r \in \overline{R} \), \(\lambda_\alpha \lambda_\alpha'^{-1} \) lies in an arbitrarily small neighborhood of the identity of the field \(K_r \), and, in particular, \(\lambda_\alpha \lambda_\alpha'^{-1} \subseteq N(K_r) \) for all \(r \in \overline{R} \) as a consequence of the choice of \(R \) as a choice of \(\overline{R} \setminus R \).

Proof of Corollary 1. Let \(\overline{R} = R(T) \cup (R \setminus R) \cup R_\alpha \). Let \(\Delta \) denote the system of simple roots in \(G \), and let \(\delta \) denote a long root, \(\delta \in \Delta \). We will show that there exists an admissible \(k \)-torus \(T_r \) in \(G, r \in \overline{R} \), such that \(\lambda_\delta \subseteq N(K_r) \) for all \(r \in \overline{R} \). Actually, from sec. 9 of [4], \(\lambda_\delta \subseteq N(K_r) \) for some \(\delta \in \Delta \). If \(\delta \) is a long root, then by means of an element of the Weyl group we can transform \(\delta \) into \(\delta \). Hence, in this case we have \(\lambda_\delta \subseteq N(K_r) \). If \(\delta \) is a short root, then we can find a long root \(\gamma \) such that \(\Sigma' = (Q_\beta + Q_\gamma) \cap \Sigma \) is a system of roots of type \(G_2 \) or \(B_2 \). The corresponding group is isotropic; by using the classification of isotropic groups of this type it is easy to find in \(G(\Sigma') \) an admissible subtorus \(\overline{T} \), with respect to which \(\lambda_\delta \subseteq N(K_r) \) for all \(r \).

From the above we have \(\lambda_\delta \subseteq N(K_r) \) for all \(r \). Applying the theorem we establish our assertion.

Proof of Corollary 2. We take an admissible torus \(\overline{T} \) in \(G \) and let \(\overline{R} = R(T) \cup (R \setminus R) \cup R_\alpha \). Let \(\lambda_\alpha \) denote the set represented by the group \(\overline{G} \) with respect to the torus \(\overline{T} \). Let \(T_r = \varphi_r(T) \) for all \(r \in \overline{R} \), and apply the theorem. According to the theorem, \(G \) contains an admissible \(k \)-torus \(T' \) such that the set \(\{\lambda_r\} \) represented by the group \(G \) with respect to \(T' \) satisfies the conditions: \(\lambda_\alpha \subseteq \lambda_\alpha \cdot N(K_r) \) for all \(r \in \overline{R} \).

The author wishes to thank E. B. Vinberg and D. A. Kazhdan for useful discussions.

Literature Cited