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INTRODU C TIOIN 

In this volume we give an exposition of some results and introduce 

some notions which were encountered during attempts to find a good method of 

graph identification. 

Sections of this volume are based mostly on unpublished papers of 

different people. I ask the reader who wishes to refer to papers constituting this 

volume to refer to them by the names given in the Table of Contents. Papers which 

are not followed by any name can be cited as my own. 

The beginning of our work was the research described in [We3] . It 

was shown in this paper how to put into correspondence with any graph a nice com- 

binatorial object. The authors were not conscious at the time of the writing 

[We 3] that this combinatorial object v~as related ~o other problems. Later it turned 

out that the same object had been independently discovered and studied in detail 

by D. G. Higman [Hi 3], [HIS] , [Hi6] and that such formations as strongly regular 

graphs, symmetric block designs, centralizer rings of permutations groups are special 

cases of this object (cf. , Section F and LI8). 

Although the properties of this object, called here a cellular algebra, 

were discussedhy D. O. Higman [Hi3] , [Hi6] , we deck]ed~o s~t~e here smu~assertions 

about them. [l~isis done in the hope that it will helpa reader to get acquainted with 

the notions and their use. 

At the same time the main stress is on the description of operations 

and constructions. Some assertions are proved to show how these constructions 

work. 

In an attempt to acquire a newunderstanding of the nature of ourprob- 

lems, much practical work was done, mostly with the help of computers. The 
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most interesting outcome in this direction is probably the program which was de- 

signed to generate all strongly regular graphs with < 32 vertices. This program 

constructed all strongly regular graphs with 25, 26, 28 vertices, but failed, f~]ad< 

of time, to construct such graphs with 29 vertices. This work is described in 

Sections S-V. The strongly regular graphs with 25 and Z6 vertices were inten- 

sively s t u d i e d  ( c f . ,  e . g . ,  [Se  5] ,  [Sh  4]) .  

L e t  u s  g i v e  n o w  a b r i e f  d e s c r i p t i o n  of  t h e  c o n t e n t  of  t h i s  

v o l u m e .  

W e  b e g i n  w i t h  a d i s c u s s i o n  o f  c e r t a i n  q u e s t i o n s  c o n n e c t e d  w i t h  t h e  

g r a p h  i s o m o r p h i s m  p r o b l e m  ( S e c t i o n A ) .  T h e n  w e  s h o w  in  S e c t i o n  B h o w  t h e  d e v e l o p -  

m e n t  o f  k n o w n  a n d  n a t u r a l  a p p r o a c h e s  l e a d s  to  o u r  m a i n  c o n s t r u c t i o n  w h i c h  i s  

d e s c r i b e d  in  d e t a i l  in  S e c t i o n  C. T h i s  c o n s t r u c t i o n  g i v e s  r i s e  t o  t h e  n o t i o n  o f  

c e l l u l a r  a l g e b r a s .  W e  d i s c u s s  p r o p e r t i e s  o f  c e l l u l a r  a l g e b r a s  i n  S e c t i o n s  D a n d  

E .  

W e  s h o w  t h e n  t h a t  c e n t r a l i z e r  r i n g s  o f  p e r m u t a t i o n  g r o u p  t h e o r y  

a r e  c e l l u l a r  a l g e b r a s  ( S e c t i o n  F )  a n d  d e s c r i b e  in  S e c t i o n  G s o m e  g e n e r a l  c l a s s e s  

o f  c e l l u l a r  a l g e b r a s .  T h e  c o n s t r u c t i o n s  of S e c t i o n  G a r e  m o d e l e d  o n  p e r m u -  

t a t i o n  group theory. 

Sections H-K deal with imprimitivity and primitivity of cellular 

algebras. These classes of cellular algebras arise naturally when one tries to 

describe the structure of general cellular algebras and they are analogous to the 

corresponding notions of permutation group theory. 

In Section L some arithmetical relations between the numerical 

parameters of cellular algebras are obtained with help of algebraic theory. 

This section shows that the algebra structure can be used to get combinatorial 

information. RecentD. O. Higman's results [Hi5] , [Hi6] cover most results of 

this Section. 
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In Section Mwe pass to the more algorithmic point of view. But 

otherwise it is essentially a repetition of Section C. In Section N and O new 

operations on graphs are introduced, and it is shown how the stability with re- 

spect to these operations restricts the structure of a cellular algebra. In Section 

1 ° we show that the stability of a cellular algebra under some set of operations can 

be used to prove results which hold for centralizer rings of permutation groups. 

In Section Q we describe our setup and terminology before proceed- 

ing to the study of algorithms~ These algorithms are described in Sections R-T. 

In Section U the results of the program based on the algorithms of Section T are 

preseni~d and the information based on these results is discussed. 

In the Appendix (Sections AA-AE; the first A stands for "Appendix '') 

we discuss different applications of the notions introduced in the main part of 

this volume. 



CONVENTIONS, ASSUMPTIONS, NOTATIONS. 

i. The references inthis book are organized in the following manner: Sections are 

numbered by capital Roman letters; references inside one section do not use 

indication of the section; references to other sections begin with the letter (or 

letters) of the section. If several references to one section are written succes- 

sively, they are divided by commas and the name of the section is used usually 

once. 

E.g., in Section L, references 4.1, 3.2; KI5, 16; B7.6.15 mean 

that subsections 4.1, 3.2 of Section L, subsections 15, 16 of Section K, subsection 

7.6.15 of Section B are referred to. 

References to original papers begin with the firsttwo letters of the 

name of the author. 

2. Assumptions and Peculiarities of Terminology. 

The word "graph" is used in two different senses: one is the usual 

notion of a graph; for the second one, see CI. 

A simple ~raph is a graph without loops, multiple or directed 

edges. The valency of a vertex of such a graph is the number of edges incident to 

this vertex. 

In Sections M-O, R a partial order satisfies an additional condition 

of Section IVi2. i. 

By the composition of a matrix A we mean the list of different 

entries of A together with their multiplicities. E.g. if A = xI then A is 
' m, n' 

composed of x with the multiplicity Inn. We say that the compositions of A and 

B are disjoint (or that A and B are disjoint)if A and B have no common 

entries. We say that A and B have the same or equal composition if A and B 
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a r e  c o m p o s e d  of  t h e  s a m e  e n t r i e s  w i t h  t h e  s a m e  m u l t i p l i c i t i e s .  If A a n d  B a r e  

m a t r i c e s  w h o s e  e n t r i e s  b e l o n g  to  a p a r t i a l l y  o r d e r e d  s e t  M ,  w e  s a y  t h a t  (flqe c o m p o -  

s i t i o n  o f  A) i s  g r e a t e r  t h a n  ( the  c o m p o s i t i o n  of  B). o r  s i m p l y  A _> B i f  t h i s  h o l d s  f o r  

compositions. Here the members of the composition of a matrix are ordered corresDond- 

i n g r y  to  t h e  o r d e r  i n  M a n d  c o m p a r i s o n  i s  u n d e r s t o o d  t e x i c o g r a p h i c a l l y .  

If A = (a l j )  i s  a n  ( n X m ) - r n a t r i x ,  g ~ S y m n ,  h ~ S y m m ,  t h e n  

g - l A h  = ( a g i , h j ) .  

C a p i t a l  G e r m a n  l e t t e r s  ~rt,  ~ ,  ~C u s u a l l y  d e n o t e  a c e l l u l a r  a l g e b r a  

or a normal subcell. 

Letters X, Y, Z usually denote a graph (amatrix whose entries are 

independent variables). Letters U, V, W usually denote a set of points. 

For typing reasons we write sometimes Es or Ws~ T' etc. , for 

x or If. etc. 
s s~ T 

3. General Notations. 

entries. 

E - i d e n t i t y  matrix. 
n 

I - (mXn)-matrix all of whose entries are ones. 
m,n 

I = I  
n n , n  

i ~ = I  - E  . 
n n n 

in = In,  l" 

d i a g ( a  1 . . . . .  an )  - d i a g o n a l  (n × n ) - m a t r i x  w i t h  a 1 . . . . .  a n as diagonal 

h. =diag(0 ..... 0,i,0 ..... 0), with 1 at the position i. 
1 

allB al2B " " k 

" ° "  \ 7 ' . "  . . . .  ) where A, B are (possibly)rectangu- 

far matrices and A = (aij). 



dim(l I Z 
i ) 

A =xI 
m,n 

Xll l 

S p A  - t r a c e  of  A. 

d i m A  - n u m b e r  of  d i f f e r e n t  e n t r i e s  of  ( m × n ) - r n a t r i x  A,  e . g . ,  

= 2, d i r n I  = 1. 
m , n  

JA t - d e g r e e  ( i . e . ,  n) of  a s q u a r e  ( n X n ) - r n a t r i x  A. 

A '  - t r a n s p o s e d  of  A. 

S = x E  + - s i m p l e x .  n n Yln . 

Z 
A = R ( s a i d :  A i s  s p l i t )  m e a n s  t h a t  d i m A  = n , w i t h  tAJ = n. 

A = c o n s t  ( sa id :  A is  c o n s t a n t )  d e n o t e s  t h a t  d i m A  = 1, i . e .  , 

f o r  a p p r o p r i a t e  x ,  m , n .  

d(C)  - t h e  n u m b e r  of  o n e s  in a n y  n o n - z e r o  r o w  of  a ( 0 , 1 ) - m a t r i x  

( is  a p p l i e d  o n l y  w h e n  it  d o e s  n o t  d e p e n d  on the  r o w ) .  

A ~ _ B  m e a n s  t h a t  b i j  = b k d i m p l i e s  a i j  = akd  w h e r e  A = (a i j ) ,  

B = ¢ o . ) .  
1j 

If X i s  an  ( m X n ) - m a t r i x ,  M a s d ~ m a t r i x ( i ,  e. , a s u b s e t  of  t he  s e t  

of  n m  p o s i t i o n s  ( i , j ) ) , a n d  e , f  a r e  ( 0 , 1 ) - m a t r i c e s ,  t h e n  

e C M d e n o t e s  t h a t  a l l  o n e s  of  e l i e  in M; 

e("] M / 0 d e n o t e s  t h a t  s o m e  o n e s  of  e l ie  in M; 

e(-~ M = 0 d e n o t e s  t h a t  M c o n t a i n s  o n l y  z e r o s  of  e; 

e C f  ( r e s p .  e( '~ f ~ 0, r e s p .  e ( ~  f = 0) d e n o t e s  t h a t  a l l  ( r e s p .  s o m e ,  r e s p .  n o n e )  

o n e s  of e a r e  o n e s  of  f. 

A(V,  W) i s  t he  s u b m a t r i x  of A cu t  ou t  b y  r o w s  w i t h  n u m b e r s  in V 

a n d  c o l u m n s  w i t h  n u m b e r s  in  W, t h a t  i s ,  i f  A = (a i j ) ,  t h e n  A ( V , W )  = (aij)ie V, jeW" 

• ,  IN, (~, IR, C d e n o t e  the  s e t  of the  i n t e g e r s ,  p o s i t i v e  i n t e g e r s ,  

rational, real, complex numbers. 

2~ + = l~KJ O. 
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[m, n] = {m, m + l  . . . . .  ~ } .  

( re,  n) = g r e a t e s t  c o m m o n  d i v i s o r  o f  m and n. 

IVl - cardinality of a set, V. 

Symn, Syrn(n) - symmetric group of all permutations of n 

SymV, Sym(V) - group of all permutations of a set V. 

symbols. 



A. SOME RE~iARIIS ABOUT THE PROBLEM 
OF GRAPH IDENTIFICATION. 

An algorithm of graph identification is an algorithm ~ whose 

domain consists of pairs of graphs and whose result on a pair FI, F Z is +i if F 1 

is isomorphic to ]2 and -i if not. Let us associate with J~ the function 

("speed") f(~,n), whosevalue at n is the maximum number of steps re- 

quired by ~, in order to find the result for any pair of graphs rl, 1- 2 with n 

ve rtice s. 

The problem of graph identification is to find an a i g o rithm 

of graph identification ~vhich for any other such algorithm ~/~3 yi e id s 

f ( ~ ,  n) <__ f(J'3, n) , 

for all sufficiently large n. 

The evident algorithm requires n! steps. It is not clear whether 

the function f(~, n) for an "optimal" algorithm J~ is polynomial or not. Possibly, 

for any constant b there is no algorithrnJ~ such that f(d~3, n) <_ n b for all n >> 0. 

But in any case, as far as I know, there is even no algorithm for which it is 

proved that 

f(~,n). Z -cn~0 for c> 0. 

For special classes of graphs such as trees or planar graphs, the 

situation is much better. In these cases there exist algorithms which achieve 

theoretical lower bounds on the number f(~,n) ([Ho 3], [Sk I]). 

In the general case there are at present some results which show 

that the situation in some close problems is almost hopeless (cf. [Ka I]). 

There are two directions in the history of published approaches to 

the problem of graph identification; let us call them conditionally "local" and 



"global". 

In the global approach (e.g. , [Va 1], iLl 1], iLl 3], [Tu 1]) 

tried different algebraic invariants of the adjacency matrices of the given graphs. 

Most common here are the characteristic polynomial, the permanent, et al. There 

is also a lot of literature where these invariants are shown to be insufficient. 

However, there are many invariants (cf. Section AE), anda responsible approach 

should consist of proving that the given invariants distinguish the graphs and could 

themselves be computed sufficiently fast. P~elated questions are discussed in more 

detail in Section AE. 

In the local approach one tries to construct a sufficient number of 

invariants of every vertex of the given graphs in terms of configurations containing 

fixed (say, 2 or 3) numbers of points and passing through the given vertex. This 

approach is the oldest one (cf. [Na i], [Un i], [Mo l]--all ten years old). These 

authors used configurations with< 2 points (i.e. , they used edges}. However, a 

recursive application of this approach (cf. [Ba i], [Sk i]) can lead to more infor- 

mation than at first glance would seem possible (for more details cf. Sections B, C)+ 

The next step is to consider configurations with 3 points. Here we 

also have many papers (e,g+, [We 3], [Le 2]). A. A. Lehmann and B. Weis- 

feller' s joint paper [We 3] (cf. also Section R)appearsIO present the best algor- 

ithm. Then we thought thatitwas time to stop andthink. Indeed, theobjectwhiehwas 

constructed with the help of configurations of size 3 is very nice, which probably 

implies that it is natural and that our approach up to this moment was aoorrect one. 

However, nothing nice is seen before us or around us which implies (also prob- 

ably) that we have to search further for a right road. 

These geometrical approaches are discussed in more detail in the 

next section. Some examples are also given there. The aim of all of them is to 



construct a partition of the vertices of the given graph into orbits under the 

automorphism group of this graph. 

One more merit of these approaches is that one is forced to study 

graphs, and even if a good algorithm is not found, one can still hope to find interest- 

ing objects or unconventional results. 

Anyway, now we still have to make an exhaustive search. Whatever 

refinements and improvements we have made only make this search "somewhat" 

shorter, but have not replaced it. In an exhaustive search we fi~ in turr~ all 

vertices of the group of vertices having the same number of configurations ~ certain 

given types. Then to the resulting graphs with one fixed vertex we again apply our 

local geometrical approach. And so forth. There is no reason to avoid doing this. 

However, if we do it too many times (of order n, say) then this would mean that 

our algorithm requires 2 cn steps and in a sense is as good as the usual ex- 

haustion. So the question is: What is the depth of our exhaustive search? This 

question has not yet been non-trivially answered in any version of an algorithm 

of graph identification. 

Possibly in the absence of a good algorithm one can prove that this 

algorithm is statistically good in some sense. For example, it would be nice (in 

any case, with or without an estimate) to know the function F(~,n,b), that is, the 

numberofpairs of graphs with n vertices forwhich ~. computes the resultin<n b steps. 

In the geometrical approach one tries, de facto, to find a canonical 

numeration ofthevertices of the given graph and then to compare the results for two 

of them. This procedure is usually disguised by making comparison after each 

step of canonization. The algorithms we describe in Sections i~ and S are algor- 

ithms of graph canonization. 

This approach is better than the usual graph identification if one 



has many graphs to compare (as, for example, the algorithm of Section S which 

worked on results of algorithm of Section T). l~a~nely, one has to canonize 

and to keep only differen£ canonical forms. So in place of (2) every graph appli- 

cations of an algorithm of graph identification, one can use n times an algorithm 

of graph canonization and then make (2) (or less) comparisons. Of course, this 

approach is an unworthy one if one has a good algorithm of identification and a bad 

algorithm of canonization. 



B. MOTIVATION. 

We discuss below steps which lead naturally to our main formalism. 

The resulting construction permits us Io associate with any finite graph I" a matrix 

algebra which is uniquely determined by the graph up to permutation of the ele- 

ments of the basis. This construction generalizes and develops different algor- 

ithms used to approach the graph isomorphism problem. Here are some examples 

of such algorithms. 

I. Summation of the Weishts of Vertices over Neighbours (e. g. , 

[Mo i]). Suppose we are given a simple graph F. The procedure is iterative. In 

the first step every vertex is given weight 1 and all vertices form one unique class. 

Suppose that in some of the later steps we have some partition V = V(F) =[-)V. 
l 

and the vertices of each V. have the same weights. In the next step we take the sum 
i 

of theweights of all vertices adjacent to the given one as the new weight of the given 

vertex. The subsets of the new partition of V are the sets of all vertices 

where the function of weight is a amstant. 

partitions. 

Example : 

Z 3 

6 5 

The process stops if we obtain no new 

Vertex i 2 34 5 6 

Step/Weight 

1 i 1 1 1 1 1 

Z Z 3 32 3 3 

3 6 8 8 6 8 8 .  

Therefore, the stabilization occurs at the second step and the partition of vertices 

is 0,4), (Z,3,6,5). 

2. Summation of the Weishts over a Partition of the Vertices (e.g., 

[Sk i]). In this case one associates with a vertex a vectorofweights. The number 



of coordinates of this vector is the number of subsets into which V = V(F) is 

partitioned. 

In the first step (as in I above) every vertex is given weight I, 

and the partition is trivial (it consists only of V). Suppose now that we have some 

partition V =~JV.. Then the weight of a vertex v ~ V in the next step is the 
I 

vector whose i-th component is the sum of l~evalencies ofaUvertieeswhichbelong 

to the i-th class V. and which are adjacent to v. The subsets of the new parti- 
i 

tion are those subsets where the weight is constant. These subsets are numbered 

according tothe (dictionary) orderofweights they represent. The process stops 

when there are no new partitions. 

Example s : 

45 1 4 

6 5 

Vertex 1 2 3 4 5 6 

Step/Weight 

1 1 i 1 1 l 'i 

2 2 3 3 Z 3 3 

3 (0,2) (i,2) (i,2) (0, Z) (i,2) (I,2) 

5 

Z 

I 2 3 4 5 6 

i 1 1 i i 1 

2 3 3 2 3 3 

( 0 , 2 )  (1,2) (1,2) ( 0 , 2 )  (1,2)  (1,2)  . 

It is not possible to do more with these graphs since the achieved 

partition is a partition into orbits of the automorphism group. 

IkTote however that for regular graphs these methods will notgive a 

partition of vertices. 

3. We can now try to partition the edges of the graphs, Asafirst 

approximation, we can consider the number of vertices incident to both vertices 

of the edge. In the first example above we have two edges which are contained in 

triangles. In the second example there are no such edges. Therefore, this pair 

of graphs is not isomorphic, although there is no distinctioncf6~evectorweights of 



the vertices, However, the following graph 

1 

F : 5 ~ 2  

is also immune to this procedure. Nevertheless, it can be seen that the auto- 

morphism group of this graph is not transitive. 

4. To further strengthen the procedure~rdetecting the differences 

of vertices and edges, we can consider not only the edges of the given graph but 

also the edges of its complement ~. (Recall that vertices of ~ are vertices of 

F, and edges of ~ are non-edges of F. ) In the above example of the graph F 

(with I0 vertices) the use of ~ permits us to distinguish the pair 1,6 of vertices. 

Namely, any edge of the graph ~ incident to these vertices is contained in one 

triangle with two sides in F and one (given) side in ~. On the other hand, ~e edges 

of ~ incident to remaining vertices are partitioned into three classes according 

to the number of triangles which contain a given edge and whose two sides are in 

F. For instance, for vertex 2 these classes are: 

edge (Z, 8) is not contained in a triangle with two sides in F; 

edges (2,4), (2,5), (2,6), (2,10) are contained in one triangle each; 

edge (Z,9) is contained in two triangles. 

5. Once we began to distinguish edges and vertices, we have to use 

convenient and effective machinery to describe this. We use the following formal- 

ization. Instead of the adjacency matrix of a simple graph P we consider the 

matrix X = X(F) whose elements are independent variables. We replace 



the ones by one variable x, say; the non-diagonal zeros by another variable, 

say y; and the diagonal zeros by a third variable, say z. 

Now the process described in 1 above consists simply of taking the 

sum of the entries of X over its rows. 

The process described in Z can be described as areconstruction of 

X. INamelyj first the diagonal elements of X are changed according to the 

respective row- sums. 

¥ = (Yij), 

Call the new matrix Y then we have, for X = (x..), 
13 

Yii = Yjj <----> k Exik : kEX'jk" 

This means that we get a partition of vertices. Now edges joining vertices of 

different classes also belong to different classes. So we require, next, that 

Yij = Yk~ ~ Yii = Ykk'Yjj = Y~" 

Stabilization in 2 above corresponds to iteration of this construction. 

5. i. Remark. The above description is not an algorithm because for an algor- 

ithm one needs to introduce some ordering (cf. Section M). We hope that the 

present discussion is sufficient for introductory purposes. 

5.2 Remark. Another virtue of this approach is that it works equally well for 

graphs with loops, multiple edges, etc. (cf. also CI, MZ). 

6. The same formalism is convenient for a description of step 4, 

designed to distinguish edges. Note that if we consider the square of a matrix X, 

then the (i,j)-entry of this square describes the set of paths of length Z from the 

vertex i to j. If, moreover, we assume that the variables of X do not 



commute, this (i, j)-th entry describes the set of ordered paths. So the next step 

is the following, We consider X Z = (zij), and we construct the matrix Y = (yij) 

using the rule 

Yij = Yk~ <=> zij = Zk~ " 

(Here again one has to use some ordering, cf, Section M, but we disregard this 

for a moment. ) 

7. Let us show how this approach works for the graph r" con- 

sidered in 4. In the matrices X, Y, Z we shall write the indices of independent 

variables in place of independent variables. 

X Y ~ X 2 

I 2 3 3 Z 2 3 3 3 3 

g I Z 3 3 3 2 3 3 3 

3 2 1Z 3 3 3 3 2 3 

3 3 2 1 Z 3 3 2 3 3 

2 3 3 2 1 3 3 3 3 2 

2 3 3 3 3 I 3 Z 2 3 

3 2 3 3 3 3 1 3 2 2 

3 3 3 2 3 2 3 1 3 2 

3 3 2 3 3 2 2 3 1 3 

3 3 3 3 2 3 Z 2 3 1 

1 Z 3 3 Z Z 3 3 3 3 

Z 1 Z 3 3 3 Z 4 5 3 

3 2 1 Z 3 3 5 3 2 4 

3 3 Z i Z 3 4 g 3 5 

Z 3 3 2 i 3 3 5 4 2 

2 3 3 3 3 1 3 2 2 3 

3 2 5 4 3 3 1 3 2 2 

3 4 3 Z 5 2 3 1 3 2 

3 5 2 3 4 2 Z 3 1 3 

3 3 4 5 Z 3 2 Z 3 1 

2 
Z~-~y 

i 3 4 4 3 5 4 6 6 4 

7 g i0 ii 12 9 lO 14 15 ii 

8 I0 Z 13 11 8 16 ii i0 17 

8 ii 13 Z i0 8 17 i0 ii 16 

7 1B ii i0 Z 9 ii 15 14 i0 

5 6 4 4 6 1 4 3 3 4 

8 i0 16 17 ii 8 Z ii I0 13 

9 14 ll i0 15 7 ii Z IZ i0 

9 15 i0 Ii 14 7 I0 iZ Z ii 

8 ii 17 16 i0 8 13 lO Ii g 
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Y: 

x I : XlX 1 + 3xZx 2 + 6x3x 3 

x 2 : XlX 2 + x2x 1 + 2x3x 2 + 2xZx 3 + 4x3x 3 

x 3 : XlX 3 + x3x I + xZx 2 + 2x3x 2 + 2xZx 3 + 3x3x 3 

x 4 : XlX 3 + x3x I + 3x2x 3 + 3x3x 2 + 2x3x 3 

x 5 : xlx 3 + x3x I + 2x2x 2 + xZx 3 + x3x 2 + 4x3x 3 

Z~ 

x I : XlX 1 + 3xZx 2 + 6x3x 3 

x 2 : XlX 1 + 3x2x 2 + 4xZx 3 + x4x 4 + x5x 5 

x 3 : XlX 2 + x2x I + 2x3x 2 + 2x2x 3 + 2x3x 3 + x3x 4 + x3x 5 

x 4 : XlX 3 + xZx 2 + x3x I + 2x3x 2 + 2x2x3+x3x3+x3x 4 + x3x 5 

x 5 : XlX 2 + xZx I + 2x2x 3 + 2x3x Z + 4x3x 3 

x 6 : xlx 3 + x3x I + x2x 4 + xgx 5 + 3x3x 3 ~ 2x3x 2 + x2x 2 

x 7 : XlX Z + x2x I + 2xZx 3 + 2x3x Z + 2x3x 3 + x4x 3 + XsX 3 

x 8 : XlX 3 + x3x I + xZx 2 + 2x2x 3 + 2x3x Z + x3x 3 + x4x 3 + x5x 3 

x 9 : XlX 3 + x3x I + x4x Z + XsX 2 + 3x3x 3 + 2xZx 3 + XzX Z 

Xl0 : XlX 2 + xZx I + x2x 3 + x3x 2 + 2x3x 3 + x2x 5 + x5x 2 + x3x 4 + x4x 3 

Xll : xlx 3 + x3x I + XzX 3 + x3x 2 + xZx Z + x3x 3 + XzX 4 + x4x Z + xZx 5 ~ x5x 3 

xi2 : XlX 3 + x3x I + x2x g + 2xzx 3 + 2x3x 2 + x3x 3 + x4x 5 + XsX 4 

x13 : XlX Z + xZx I + 2x3x 3 + 2xZx 3 + 2x3x 2 + x5x 4 + x4x 5 

x14 : XlX 4 + x4x I + 2x2x 3 + 3x3x 2 + x3x 5 + x5x 3 

x15 : xlx 5 + XsX 1 + 2XzX 2 + 2x3x 3 + x2x 3 + x3x 2 + x3x 4 + x4x 3 

x16 : XlX 5 + XsX 1 + 2x2x 2 + 4x3x 3 + xzx 4 + x4x Z 

x17 : XlX 4 + x4x I + 2x3x 3 + 2x2x 3 + 2x3x 2 + XzX 5 + xSx Z 

The matrix X contains three variables;x I is for the diagonal entries, x Z iS ibr ~ edges ~f 
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the graph i ~, x 3 is for edges of the complementary graph of F. Thevariables of Y 

correspond to five different polynomials which are the entriesofthematrix X Z. The 

square y2 of Y already contains 17 different polynomials; to each of them there 

corresponds an independent variable of the matrix Z. If, finally, one considers 

2 
Z , one sees that diagonal variables are partitioned into three classes (i, 6), 

(Z, 5, 8, 9) and (3, 4, 7,10) and further squaring does not lead to new partitions. The 

permutations (written cyclically) (Z, 5)(3, 4)(7,10)(8, 9) and (3, 7)(4,10) and 

(I, 6)(2, 9)(5, 8) are auto1:morphisms of the graph F. They 

generate a group which acts transitively on the vertices of each 

class (and also on the edges of each class). Thus we have revealed all differences 

of vertices and edges of the graph F. 

Let us note that the application of the described procedure to a 

simple graph can lead to an "orientation" of certain edges. For instance, in 

the graph below 

4 

the edge (1,2) can be considered as oriented (in the sense that its vertices are sit- 

uateddifferently with respect to the whole graph). In Sections AA, AB, AC 

examples are given of simple graphs whose edges acquire "orientation" although 

the ends of the edges have no differences. 

The use of matrix X, with independent variables as entries, per- 

mits one to employ the described procedure not only for simple graphs but also 

for oriented graphs, for graphs with multiple or coloured edges, etc. Thus, any 

graph is interpreted as a complete graph with some coloring ~ the e~es and the vertices. 

This approach 1 ead s t o a generalization of the definition of a graph (cf. CI). 
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Let us also note here that our definition generalizes the definition of A. A. Zykov 

[Zy i] in the sense that in place of boolean rings we consider arbitrary rings. On 

the other hand, our definition is needed only to facilitate and formalize the exposi- 

tion. All considerations might be (and sometimes are) also conducted in geometri- 

cal terms. 



C. A CONSTRUCTION OF A STATIONARY GRAPH. 

In this section we systematically describe the procedures introduced in 

the preceding section. The result of these procedures is ~n invariant of the given 

graph. This invariant is constructed in the same manner for all graphs (simple, 

with coloured, directed, or multiple edges, and with coloured vertices). But even 

if one begins with a simple graph, it can acquire orientation of-edges, colouration 

of vertices, etc. (cf. the preceding section and Sections AA, AB, AC; in these 

sections one can also find examples of the application of the constructions of this 

section ). 

Since we are forced to consider quite different kinds of graphs, it is 

convenient to make the following definition. 

i. Definition. An {nXn)-matrix X = (xij) is called a sraph if its entries are 

independent variables Zk, k = i ..... N, and if xii ~ Xst for s ~ t. The number 

n is called the desree of X and the number N of different variables which are 

entries of X is called the dimension of X. Notations: n = IX I, N = dimX. We 

assume throughout that independent variables do not commute. 

If a geometrical image of a graph is preferred, 

one can consider the complete graph with coloured vertices and 

edges. It can be assumed that at each vertex there is a loop, having the same 

colour as the vertex; this colour is coded in our matrix X by the corresponding 

diagonal entry. For each pair of vertices i and j there is either one undirected 

edge of colour x . (if x.. = x..), or, if x . ~x.., there is the directed edge of 
lj i I jl lj jl 

colour x.. from i to j and the directed edge of colour x.. from j to i. 
lj 31 
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Z. Definitions. Let X = (xij) and y = (Yij) be two graphs of degree n. We say 

that : 

2.1. A permutation matrix g of degree n is an isomorphism of X and Y if 

gXg -I = Y. If X : Y, then g is called an automorphism of X. The set of all 

automorphisms of X is denoted AutX. 

2.Z. X is imbedded in Y (denoted IK~_Y) if Yij = Ykf for all i,j,k,~. 

2. 3. l< is equivalent to Y (denoted X ~Y) if X~ Y and Y~X. 

2.4. An embedding X~ Y is canonical if Aut X : Aut Y. 

To get the geometrical meaning of these definitions, suppose that 

equally numbered vertices of X and Y are identified. Then ~ is an auto- 

morphism of X means that the pair of vertices before and after permutation 

are connected by an edge of the same colour. Further, X is imbedded in Y if 

equally coloured vertices of Y are also equally coloured in X. 

3. Remarks. 

3.1. If >l~_ Y, then dimX<dimY. 

3. Z. If X~ Y, then AutY~AutX. 

3.3.  If X~__Y, YQ~__Z, then X~__Z. 

3.4. If X ~Y, Y ~Z, then X ~Z. So ~ is an equivalence relation. 

3.5. Any graph of degree n contains the simplex S . This is the only graph of 
n 

d i m e n s i o n  2; i ts  m a t r i x  is  XEn+Y~ n. In our  a p p r o a c h  we s i m u l t a n e o u s l y  c o n s i d e r  

several ordinary graphs; in the case of S these graphs are the complete 
n 

graph and the empty graph. So "simple~' is the name for the equivalence class of 

these two graphs. 

3.6. Every graph of degree n is imbedded in a graph of degree n and dimension 

Z 
n , whichis unique up to equivalence. We call this graph the split graph and denote it 
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by R. 

4. Definitions. Let X = (xij) and Y = (yij) be two graphs of degree n. We say 

that: 

4. i. The graph Z = (zij) is the superimposition of graphs X and Y (notation 

Z = XVY) if 

zij = Zkf <----> xij = Xkf and Yij = Yk~" 

4.2. The g r a p h  Z = ( z . . )  i s  t h e  p r o d u c t  of  X a n d  Y ( n o t a t i o n  
1j 

z i j  = Zk~ <=:> s2;XisYsj = 2~XksYs~.  
s 

( R e c a l l  t h a t  o u r  v a r i a b I e s  do  n o t  c o m m u t e .  ) 

Z=X o Y) if 

4. 3. e(X) : (X o X) V (X o X)' is the extension of X (A' is the transpose of A). 

4.4. X is stationary if a(X) ~X. 

These definitions depend only on the equivalence class of X and 

Y, and the resulting graph of 4.1, 4.2, 4. 3 is also defined up to equivalence. 

To geometrically understand the meaning of the superimposition, one 

should imagine the colouring of an edge of X~fas the (ordered) mixture of the colour- 

ings of edges of X and Y. 

In the case of the product, the colour of the edge between vertices 

i and j depends on the number and colouration of the paths of length 2 between 

vertices i and j such that the first edge of each path is an edge of X and the 

second one is an edge of Y. The polynomial EXisYsj completely describes the 
s 

set of these paths. 

5. Lemma. Let X = (xij), Y = (Yij), Z = (zij) be graphs of degree n and 

Z = X o Y. Then xii # xjj implies that Zik # zj~. Analogously Yii # Yjj implies 

that Zki # z j for all k, ~. 
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Proof. The second assertion is proved in the same way as the first one. So let 

us only prove the first one. We have to compare the set of paths of length 2 

from the i-th to the k-th vertex with the analogous set from the j-th to the 

-th. Each set contains only one path beginning with a loop, namely, the first 

begins with the loop of the colour x.. and then goes through the edge Yik" The 
ii 

second one begins with the loop of colour x .. Since x.. ~ x.., these sets of paths 
3j 11 j j  

do not coincide, whence the assertion. 

Formally, Zik corresponds to ZXisYsk and zjf corresponds to 
S 

~ XjsYs~.  The  f i r s t  s u m  c o n t a i n s  o n l y  s u m m a n d s  x i iYik  a n d  x ikYkk i n v o l v i n g  

d i a g o n a l  v a r i a b l e s  a n d  the  s e c o n d  o n l y  x j jy j~  a n d  x j f y f ~ .  S i n c e  by  a s s u m p t i o n  

x . .  ~ x . .  and  v a r i a b l e s  do no t  c o m m u t e  a n d  s i n c e  d i a g o n a l  v a r i a b l e s  a r e  
11  J3 

different from non-diagonal ones by the definition of a graph, our assertion 

follows once more. 

6. Lernma. Let X and Y be graphs of degree 

6.1. X~XVY, YCXVY. 

6.2. XCX ° Y, YCX o Z. 

n. 

Proof. 6.1 is evident. The second part of 6. g is proved similarly to its first 

part. So let us prove the first part. We have to prove that xij ~ Xkf implies 

~xisYsj ~XksYsf. The only entries in these sums which contain the diagonal 

variables on the right are xijyjj and xkfY~0 respectively. Since xij ~ Xk~, 

the sums are different, which is our assertion. 

7. Corollaries. Let X and Y be graphs of degree n. 

7.1. Aut(XV Y) = AutX(~Aut Y. 

7.Z. Aut(X o Y) = AutX(~AutY. 
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7. 3. The imbedding XC X ° X is a canonical one. 

cally imbedded in a(X), AutX = Aut(X o X). 

In particular, X i s  c a n o n i -  

Proof. 7.1 and 7.Z follow from 6.1, 6.Z and 3.2; 7. 3 follows from 7.1, 7. Z. 

8. Stabilization. 

Let X be a graph of degree n. Put X (0) = X, X (i+l) = ~(x(i)). By 

Lemrna 6 we have dimX (i) < dimX (i+l). On the other hand, we have 

dimX(i)<_n 2 for all i. Since by 6.1, 6.2, x(i)~x (i+l), we have x(i) ~X (q) for 

A 

some q and for all i>q. Let us denote this graph X (q) by X. 

8.1. Lemma. Suppose X is a stationary graph and Y any graph. If Y~X, 

A ~ A 
then YQ=X. In particular, AutX~AutY = AutY. 

This follows directly from Lemma 6 and Corollary 7.3. 

From the above it follows: 

8. Z. Theorem. For any graph X there exists a unique 

A 
(up to equivalence) stationary graph X such that X is 

A 
canonically imbedded in X . For every stationary graph Y such that X is 

canonically imbedded in Y one has XC Y. 

has (oXc~-l)~oXo . 

In particular, for o ~ Sym(n), one 

9, 

graph. 

9.1. 

Elementary Properties of Stationary Graphs. Let X = (xij) be a stationary 

X o X ~X, that is, 

9.2. X ~X' , that is, 

X.. < ~  iJ = Xk~ EXisXsj = EXksXsf " 
S S 

xij = Xk~ <~ xji = Xfk. 
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9. 3. xij = Xk~ implies xii = Xkk , x. = x 

9.4. xii = Xkk implies ~Xsi = ~Xsk and ~x = ~Xks. is 
S S S S 

Proof. These properties are evident corollaries of 4. 3, 4.4, 5, 6.1, 6.Z. 

Geometrically we interpret them as follows. If we have edges 

(say , xij, Xkf) of the same colour in X, then the sets of (ordered) paths of 

length Z from the first vertices of these edges (i. e. , i and k respectively) to 

the other vertices of these edges (i.e. , j and ~ respectively) contain the same 

number of paths of every colour. This is an interpretation of 9.1. The property 

9. Z means that if two ordered pairs of vertices are connected by edges of the same 

colour, then the edges, connecting the same pairs of vertices but in opposite 

directions, also have the same colour. 

The property 9. 3 means that edges of the same colour are incident 

to equally coloured vertices. 

The property 9.4 means that the set of colours (counted with multi- 

plicity) of edges incident to equally coloured vertices is the same. 

i0. Stability with Respect to Paths of Greater Length , . 

Let <i-j> t denote the set of the paths of length t from the vertex i 

to the vertex j of X. We say that <i-j> t and <k-~>t have the same composi- 

tion if the multiplicities of the set of paths coloured in the same way are the same 

for both sets. 

Theorem. Let X = (xij) be a stationary graph. If xij = Xk~, then <i-j> t 

<k-~ > have the same composition. 
t 

and 

Proof. By induction. For t = i there is nothing to prove. For t = Z, it is the 
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definition of a stationary graph. Now remark (as already mentioned in the remarks 

after 4.4) that if Y and Z are graphs, then the (i,j)-th element of Y. Z 

describes paths of length Z from i to j whose first edge belongs to Y and the 

secondto Z. By induction <i-J>t_ 1 has the same composition as 

<k-f> that is, the (i,j)-th and (k,f)-th elements of X t-I coincide. But 
t-l' 

since X is stationary, fihe (i,j)-th and (k,~)-th elements of Xt-I-x also 

coincide, as required. 

II. The Matrix Algebra and the Basic Elements of a Stationary Graph. 

Let X be a stationary graph. Consider the set 0-C(X) ofthematrices 

A = (aij) (with entries in some ring) such that 

aij = ak~ if xij = Xkf. 

II. i. Lemma. The set 0-t(X) is a matrix algebr~ stable under transposition. 

T h i s  is  a d i r e c t  c o r o l l a r y  of 9 .1 ,  9. Z. 

II. I.I. The matrix X is a generic point of the algebra alL(X) (cf. Section L). 

ii. 2. Again let X be a stationary graph, m = dimX. Let x I ..... x m be the 

distinct variables which are the entries of X. Let e k be ~3,1)-matrices obtained by 

substitutione6 Xk= l, x i = 0 for i ~ k, in X. The matrices e.~ form a base of the 

algebra (TL(X). We call them the basic elements of X and 0-[(X). Since they can 

be considered as adjacency matrices of graphs (directed or not) we sometimes 

call them the basic graphs. We have 

X = ~x.e . 
i 1 

Let us point out some properties of the set of basic elements. 

ll.Z.l. If e. is a basic element, then so is el (it follows from 9.2). 
1 I 
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l l . Z . Z .  If e.  a n d  e.  a r e  b a s i c  e l e m e n t s ,  then 
1 j 

k 
e i e  j = N k a i j e k  

k 
w h e r e  a . .  a r e  n o n - n e g a t i v e  i n t e g e r s .  (In f a c t ,  a c c o r d i n g  to  t he  r e m a r k s  a f t e r  

1j 
k 

4 . 4 ,  t he  n u m b e r  a . .  i s  t he  n u m b e r  of t r i a n g l e s  of t h e  f o r m  
1j 

a / ~ ; b  
k 

w i t h  f i x e d  v e r t i c e s  a ,  b ( c o n n e c t e d  by  a n  e d g e  of  c o l o u r  k)) .  

Ii. 2. 3. The graphs e. are quasiregular in the sense that any vertex of this 
1 

g r a p h  l y i n g  on  a n  e d g e  h a s  t h e  s a m e  n u m b e r  of  e n t e r i n g  e d g e s  a n d  t h e  s a m e  n u m -  

b e r  of e x i t i n g  e d g e s  ( t h i s  f o l l o w s  f r o m  9 . 4 ) .  

12. 

a .  

E x a m p l e  s.  

1 Z 

F 
4 3 

X o X = (Pij) 

Pl I  = PZ2 = P33 

o 1 , x ( r ) =  
a(r) : t o 

0 1 (i y x y /  
z y x/ 

= P44 = xx' + Zyy' + zz' 

Plz = PI4 = P21 = P23 = P3Z = P34 = P41 = P43 = xy' + yx' + zy' + yz' 

P13 = Pz4 = P31 = P42 = xz' + Zyy' + zx'. 

Thus, X ~ct(X), i.e., X is a stationary graph. 

b. 

0 i , X(F): x y z 
F : A(F) : 0 0 z x 

0 0 ~ y z z 

X o X = (Pij)  

P l l  = = = = xx' + yz' + zz' + zy' 
PZZ P33 P44 
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PI2 = P23 = P34 = P41 = xy~ + yx' + 2zz' 

P13 = P24 = P31 = P42 = xz' +yy' + zx' + zz' 

PI4 = P21 = P32 = P43 = xz' + yz' + zy' + zx' . 

Thus, X o X ~Y = 

x y z u  

u x y z  

z u x y  

y z u x  

A 
It is easy to verify that a(Y) ~Y, hence X = Y. 

c. 

F : 

1 

3 Z 

A(F): 

0 1 1 1 0 0  
I 0 1 0 1 0  
i i 0 0 0 1  
i 0 0 0 1 1  
0 1 0 1 0 1  
0 0 1 1 1 0  

x(r): 

x y y y z z  

y x y z y z  

y y x z z y  

y z z x y y  

z y z y x y  

z z y y y x  

X o X = ( P i j )  

= . = = x_x' + 3yy' + zz' 
Pll = P22 " "  P66 

PI5 = PI6 = P24 = P26 = P34 = P35 = P42 = P43 = P51 = P53 = P61 = P62 = 

= xz' + yz'+ 2yy' + zy' + zx' 

x y y z u u 

y x y u z u 

X ° X ~ Y =  y y x u u z 
z u u x y y 

u z u y x y 

u u z y y x 

It is easy to check that Y is stationary, Y = a(Y). Thus Y has exactly four 

basic elements: 

e I (corresponds to x) 
q ~ g q g Q  
I g 3 4 5 6  

e2 (c°rresp°nds t° Y) ~ k  6 ~  
3 2 5 
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i1213 (corresponds to z) [ . e 3 
! 4 5 6 

1 5 

< > e 4 ( c o r r e s p o n d s  to  u )  6 3 

z 4 

d. One more example of stabilization is given in the preceding section. Sections 

AA, AB, AC can also be considered as examples of stabilization. 



D. PROPERTIES OF CELLS. 

In the preceding section it was shown that the procedure of stabiliza- 

a 
tion leads naturally to the stationary graph X. It was shown also that a stationary 

A A 
graph X defines the matrix algebra 0-C(X). In this section we describe in detail the 

properties of a special class of such algebras. A more general (but also more 

formal) discussion of properties of algebras of this sort will be given in the next 

section. For examples, see Sections F, G. 

The exposition below is based on [We 3]. The results are the 

analogues of certain well-known properties of permutation groups ([Wi I] ,[Hi Z] ). 

1. W e  begin by giving an axiomatic definition. 

i.i. Definitions. A cellular algebra is a matrix algebra ~ having the following 

properties. 

i) 0"(. has a basis B = {e., i = l,Z ..... d}, where the e. are (0,1)-matrices. 
1 1 

The basis {el} is called a standard basis of 07.; standard bases differ only by the 

order of their elements. 

ii) If e. E B, then e! ~ B. 
l 1 

iii) Ee. = I , where n is the degree of matrices of 0"6; n is called the degree of 0-L. 
i n 

iv) There exists an integer-valued function d(e.) 
I 

such that the number of ones 

in any non-zero row of e. is equal to d(e.). In this section (and also rather fre- 
i i 

quently elsewhere) we use the notation n. = d(e.). 
I i 

The basis {~.} of the underlying space V of the matrices of 
1 

4-L is called the standard basis of V. 

The matrix X = Ex.e., where the x. are independent variables is 
i i 1 

called the matrix of the cellular algebra o-L, written X = X(0L). If ~ is a cellu- 

lar algebra with unity, then X(~rt) is a stationary graph. On the other hand, if X 
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is a stationary graph, then there exists a cellular algebra ~L with unity such that 

X = X(gt); in this case ~ve write 07- = ~(X). 

i. 2. Definition. A cellular algebra 0-L is called a cell if the number of ones in 

any row of every e. is not zero. 
1 

i. 3. Definition. A cellular algebra ~ is called a cellular subalgebra of a 

cellular algebra ~r~ if ~ is a subalgebra of ~r~. 

In this case the elements of a standard basis of ~ are sums of 

some elements of a standard basis of 0L. This follows from i. i i), iii). 

Z. Remark. The set of elements of the standard basis of a cellular algebra can 

be considered as a set of relations on [l,n] ×[l,n]. This set of relations forms a 

coherent configuration in the sense of D. G. Higman (cf. [Hi 3]). Conversely, any 

coherent configuration can be obtained in this way. So our cellular algebras and 

D. G. Higman' s coherent configurations are equivalent objects. In [Hi 5],[Hi6] D.G 

Higman uses the term "adjacency algebra" where we use the term "cellular 

algebra ". 

3. Remarks. i) The application of I.i iv) to e'. shows that the number of ones 
I 

in any non-zero column of e.1 is the same (and equal to d(e~)). 

ii) Geometrically, a cell with unity is a stationary graph X (cf. , C 4.4) with the 

following properties : 

a) All vertices of X have the same colour (are incident to loops of 

the same colour). 

b) All basic elements of X are regular (cf. C ii.2. 3). 

4. Properties of Cells with Unity. Let ~ be a cell with unity, B its standard 
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cl. 
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i = 0 ,1  . . . . .  d - l } ,  e 0 = E n .  
k 

= =e' l=I n- Put eie j 23kaijek' el' i ' 

s k k s 

~ , s a i j a s l  = G s a i s a j l .  

Proof. This equality expresses the associativity of  ~L. Geometrically, cl has 

k 
the following meaning. Consider the number aij f of paths of length 3 and 

colour (i, j, ~) which are cut short by an edge of colour k. (By c i0 this number 

d o e s  n o t  d e p e n d  on  flae e d g e  o f  c o l o u r  k b u t  o n l y  on  t h e  s e q u e n c e  (i,  j ,  f , k ) .  ) T h i s  

number can be computed in two ways. First, one can considerthepathsofcolour 

(s,~) along the given edge, and for each a k s~ of such paths, one can consider the 

paths of colour (i, j) along its edge of colour s. [['he number of the latter is 

S 
a..° 
13 

s . k k s 
a i ~ ~ s  ~ a J a 

\. 
_. v >3'-4 

k s 
Thus for s fixed, the product asfai: J is equal to the number of paths of colour 

(i, j, ~) along an edge of colour k under the condition that the first and the third 

vertices are connected by an edge of colour s. Summing over s 

k k s k 
evidently the number aij ~. Thus aij ~ = ~saijas~. 

On the other hand, one can consider paths of colour 

o n e  o b t a i n s  

( i , s )  a l o n g  a n  

edge of colour k and then paths of colour (j, ~) along an edge of colour s. In 

k k s 
this case one obtains aii ~ = ~,salsaif (see figure above). Comparing these two 

k 
expressions for ai. fj we obtain our formula. 

cZ. n.~ -- n. 
1 l 

Proof. In the case of a cell, the basic elements e.1 and eil are regular. 
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Therefore, for each vertex the entering and exiting valencies coincide. 

c3. (~b el i )'I = I. (~bie i) = (~.bini)l. 

Proof. By i.i iv) and cZ, e..l = I-e. = n l. Hence our assertion follows by the 
i I i 

distributive law of multiplication. 

c4. a j J n k ~n k n. 
Y'i ki = ~iaik = ' = 

S 
- - ~ = = ~ • 

Proof. By c3, we have, nkl I. e k (~iei)" ek >~i(eiek ) ~'i~'saikes s 

s 

s = ~snkes whence ~iaik = n k. Applying an analogous sequence of equalities (Zialk)e s 

S 
to e k" I., we obtain ~iaki = n k. The last equality is evident. 

Geometrically, our property has the following interpretation. 

Consider a fixed edge of colour j and the paths of length 2 and colour (k,i) 

along it. If k, i are fixed, the number of these paths is J Summing over i 
aki" 

we obtain the number of the paths of length 2 along the given edge, which begin 

with an edge of colour k, that is, we obtain the valency n k of graph e k. 

S 
c5.  ~. a .n = n n . 

s 13 s 13 

S ~ S 

Proof. (ninj)l = e i. (ej-l) = (eiej).l = (~aijes).l = (~aijns)-l. 

Geometrically, n is equal to the number of edges of colour s 
s 

S 
e x i t i n g  f r o m  a v e r t e x ,  a n d  a . .  i s  e q u a l  t o  t h e  n u m b e r  of  p a t h s  o f  c o l o u r  (i, j)  

1j 

a l o n g  a n  e d g e  of c o l o u r  s .  H e n c e ,  2~a.S.n i s  t h e  n u m b e r  of  a l l  p a t h s  of  c o l o u r  
lj s 

(i,  j) e x i t i n g  f r o m  a f i x e d  v e r t e x .  On  the  o t h e r  h a n d ,  t h i s  n u m b e r  e v i d e n t l y  

equals n.n., since n. edges of colour i leave a vertex, and n. edges of 
1 J [ 

co lou r  j leave the endpoints of a l l  those edges. 

0 i 
c6. aij = 6i, jn i , a0j = 6ij (where 6ij is the Kronecker symbol). 
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0 
Proof. Since e 0 = En and e ,~ = e!1, we have aii , = n..1 On the other hand, 

0 0 
~.a . = n. by c4, hence a.. = 0 if j ~ i'. This proves the first equality. To 

j 1j 1 1j 

i 
prove the second, one considers the equality e i = e 0- e. = 3 2]ia0j el" 

J 

0 
G e o m e t r i c a l l y ,  a . .  e q u a l s  the  n u m b e r  of t he  pa th s  of the  

tj 

f o r m  ( i , j )  w h o s e  s o u r c e -  and e n d - p o i n t s  c o i n c i d e .  E v i d e n t l y ,  th i s  n u m b e r  is  

zero if i' ~ j, and it is equal to the degree of e. if i = j' . To interpret the 
1 

second equality, let us consider those paths of length Z along an edge of colour i 

which begin with the loop (colour 0) and then continue by an edge of colour j. It 

i 
is evident that the number a0= 3 of those paths is 1 if i = j, and is 0 otherwise. 

k k' 
c7. aij = aj, i' " 

S T SI 
Proof. ~aije s = (eiej)' = e[e' = 52aj, e' . Geometrically, it is sufficient to con- 

j i i' s 

sider, together with the paths (i,j) along an edge of colour k, the same paths 

in reverse direction. These latter are paths of the form (j',i ~) along the 

edge of colour k' . 

i r ,1  k' 
=na j ' c8. niajk j kl = nkaij " 

Proof. Take cl with f = 0: 

s 0 0 s 

~sajkasi = ~sajsaki , 

and use c6: 

i' s s 0 0 s 
nia = ~s a k6si , n i = ~s a = ~3 a. a jk j jkasi s 3s ki 

= Es6j, = n a J snjaki j ki 

The second equality is proved analogously. 

Geometrically, equality c8 has the following meaning. Consider 

all paths of the form (j,k,i) whose source- and end-points coincide. First, 



28 

fixing the third edge (of colour i )  of one of these cycles, one sees that each such 

i' 
edge cuts short aik cycles (cf. Fig. below). Since from each vertex there 

i' 
exist nl edges of colour i, one obtains nia_ kj as the number of cycles of the 

k 

J 

Fig. 

form (j, k, i). On the other hand, fixing an edge of colour j one obtains j sets 

j, 
of cycles, and each set contains aki cycles. 

max(n.;n.) 

i' (n.,n.)l ~ <_ nk c9. If alk ~ 0, then . 
J l j 

n 
i' i i' ' 

Proof. If ajk fl 0, c8 implies --n. = aak; = a]ik >- i. 
J 

n, n 
i' 

of ) Since by c4, n k >_ajk , we obtain n k> ) 
(ni,nj)" -- (ni, n.)" 

3 
n. 

i 
n k > -- (ni ,  nj)" 

Therefore ajk is a multiple 

Similarly, 

clO. The following assertions are proved similarly: 

i' 
a) akj is a multiple of 

< nj nk 1 njnk(ni, nj, nk) 

L. C.M. (ni, nj ) , (nVn k = (ni, nj)(ni,nj)(nj,nk ) . 

i ! 
In addition, since hi< _> akj we have: 

b) nk (ni, nj)(ni, nk)(nj , nk) i' 
> if ~ 0 
-- (n i, nj, nk) akj ' 

and analogous inequalities hold for n. and n.. 
i J 



E. PROPERTIES OF CELLULAR ALGE]31~AS OF RANK GREATER THAN ONE. 

In this section we give short proofs of certain properties of general 

ce]lularalgebras. Theseprooertiesadmit, of course, a similar geometrical interpre- 

tation as in the preceding section. After this we introduce some general notions (honao- 

rnorphism, equivalence, etc.) and showhow the corresponding properties can be established. 

The definition of a homomorphism requires reference to Sections H and I. This 

does not lead to a loop. The results in 5.Z-5.5 are used in the study of correct 

cellular algebras (cf. J6) which play an important role in the algorithm of Section 

R. The assertion 5.6 is also used in this algorithm. 

We begin with a proposition which shows that the matrix of a cellu- 

lar algebra naturally falls into blocks ("cells"). This is the reason why our alge- 

bras are called cellular. 

i. Decomposition of Cellular Algebras with Unity. 

Proposition. Let ~L be a cellular algebra with unity (i. e. , E ~ ~fL, where 
n 

n = 1oLI), and let {ei}i~ I be its standard basis. Then 

a) E = ~ e , where I 0 is an appropriate set of indices; 
n i~ I 0 i 

2 
b) e.l = e.,1 e!1 = e.~ for all i~ I0; 

c) let T(i,j) = {r : e e e. = e } for i,j ~ I 0, then I =~. T(i,j); 
I r j r I, j~ I 0 

d) for any i ~ Io, 4-ti = ei0v.e i is the cell with a standard basis {e., j ~ T(i,i)} 
J 

with respectIDih~basis {~ t : ei~ t = ~t ) of the space V. = e.V; e. is the unity of 
i l i 

OL.; 
i 

e) dimV.1 = Spe.1 f o r  a l l  i ~ I O. 
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Proof. Since {e.} is a basis of 0% and E E 01, one has E = Ea.e.. By 
I n n i i 

DI.I iii), the matrices e. do not intersect. Thus a. = 0 or i. Setting 
i 1 

I 0 = {i : a.1 = I}, one obtains a). 

It is clear that the matrices ei, i c I0, only have ones at the diagonal; 

this proves b). 

Let us prove c). If e e e ~ 0, then e = e.e e ~ 0"I, hence 
I r j I r 3 

e = Ea e.. By b), it is clear that eCe . If e ~ e , then by DI.I iii), the decom- 
I I -- r r 

position e = Ea e is impossible, hence e = e . This means that 
I i r 

eiere_j ~ 0 implies e.e e. = e . Q.E.D. 
I r j r 

The assertions d) and e) are now evident. 

X = Exie i can be brought into a block form: 

X l l  

X = ( X i j ) i  ' je I0  = 

\ Xtl 

Corollary. By a simultaneous permutation of rows and columns the matrix 

x12... Xlt \ 

Xt2.- .Xtt / 

where Xij = Edc T(i,j)Xded . 

If N.I = Spei' i ~ I0, then Xij is an (Ni×Nj)-matrix. A representa- 

tion of X in the form (Xij) will be called a central decgmposition, or simply a 

decomposition of X. 

Proof. Let V i = eiVi, i ~ I 0. 

assertion follows. 

From {~i} =~J({~'}~t J Vi) andfrom ld) our 

3. Assumptions and Notations. 

Let 03 be a cellular algebra with unity, X = X(~rg) its matrix, 
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X = (Xij) i t s  d e c o m p o s i t i o n  (cf. 2 a b o v e ) .  We w r i t e ,  and  c a l l  

10"61 = IX] the  degree of ~L and  X; 

dim0Z = dimX the dimension of 0-c and X; 

I101 the rank of 072 and X; 

X..  the connection block of X.. with X.. ;  
ij n j j  

V(~L) = V(X) the vertices of X; 

V(Xii )  = {j : ei~ j = ~j} the v e r t i c e s  of the cell X .;11 

= e' - it is clear that m ( T(i,j} implies that m' ( T(j,[); 
ern~ m 

n i = d(ei) - the number of ones inany non-zero row of e ;i 

hi, = d(e~) - the number of ones inany non-zero column of e.;l 

X = R, 0~= ii - X and 0-L are split (i.e., dimX = IXI 2, dim0~ = 

Io~12), 
X = Sn - X is the simplex, if X = XEn+Y~ n. 

3.1. Remark. In his study of coherent configurations (cf. DZ), D. G. Higman, 

uses the word "rank" where we use the word "dimension". Our "split" case cor- 

responds to his "trivial". 

4. General Properties of Structure Constants. 

Proposition (compare D4). Put N = Spe 
Q 

for aE I 0 and e 

a,~E I 0. L e t  a , ~ , k , / a , p , c ~  ( I0,  m E T ( a , ~ ) ,  i E T(L,/~), j E T ( p , o ) .  

a) -N = n .IN ; nlTl~ ~ m (1 

b) e .e. = 0 if ~ ilk; 
m i 

s s ~ + ;  
e "e. = E a .e ,a . 
m i ml s Inl 

s~ T(a, ~) 
S m IT1 s 

c) E s a i j .  a s l  = E s a i s .  a j l ;  

E e for 
t 

t~ T(~, ~) 

Then 
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d )  ( E b m e m ) e k H  = ( 2; n b m ) 6 ~ k e a / ; ~ , ~  
m~ T ( a ,  ~) m e  T ( a ,  ~) 

ek ( ~ bmem) : ( 2; nm, bm)6~ek~; 
m~ T(a, ~) m~ T(~, ~) 

m 
e) 2; a.. = 5 p6 ~6k ni; 

In ~ m 

f) ai, j, = aji; 

S 
g)  2; a .n  = 6 n - n . ;  

s ml s ~k m l 

m 6 6 for all p e I0; h) api = l m  pk 

i) aPlm = 6im'6pk'n'z for all p ~ Io; 

m' i' 
J ) n m, aij = niajm. 

Proof. a) is obtained by counting ones in e in two ways: N. nm, (resp. 
rn 

N'n ) is the number of ones in any non-zero column (resp. row) multiplied by the 
rn 

number of non-zero columns (resp. rows). 

b)  I f  B # k, t h e n  e ~ e  i = 0, e m e  ~ = e r a ,  h e n c e  ( e m e ~ ) e  i = 0. I f  

= k, one has ca. (emei)'e = (eaem)(eie 9 = em xe" whence em i--e Cea~. It 

follows that 

S 
e e = ~ a .e . 
mi mx s 

s~ T(~,  ~) 

Since e , e., e are matrices with non-negative elements, from Dl. liii) one 
m l s 

s s 
s e e s  t h a t  a . .  > 0 a n d  a . .  ~ 25. 

z3 -- 13 
S s 

c)  F u r t h e r ,  e i ( e j e ~ )  = ( e i e j ) e ~ ,  t h a t  i s ,  e i ( 2 ; s a j e s )  = ( Z s a i j e s ) e  ~, 

s t s 
w h e n c e  2;  a a e = 2~ a C o m p a r i n g  c o e f f i c i e n t s  o f  e o n  b o t h  s i d e s ,  o n e  

s,t j~ is t s,t s~et" t 

obtains c) .  

d) i s  e v i d e n t .  

e)  L e t  u s  c o n s i d e r  e . e  
x per = ni6 pek~ I (cf. d)). From 
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ep,6 = 
-- S 

e a n d  e . e  = ~ ~ a . . e ,  o n e  o b t a i n s  e) .  
je T ( P ,  (~) 3 ~ pcr s¢ T(ct, /~) jc T ( P ,  cr) zj s 

f) follows from the equality (eiej)' = ej e~ = ej, el,. 

g) One has nrnni6~kekw = em(niekv ) = em(eie v ) = (emei)e w = 

S - -  

= ( ~ a~ies)%w = ( ~ a n )e whence g). 
s ~ T ( a , ~ )  s c T ( a , ~ )  m z  s aw 

h) is the property 2c) of the idempotents written in terms of 

k 
a... 
zj 

i) becomes evident if we note that the diagonal entries of e.e are ob- 
i m 

rained b y  m u l t i p l i c a t i o n  o f  t - t h  r o w  of  e.  b y  t - t h  c o l u m n  o f  e B y  D1.1  i i ) ,  
1 m 

i i i )  t h e  p r o d u c t  i s  fl 0 i f f  m = i ' .  In  t h e  l a t t e r  c a s e  i t  i s  e q u a l  t o  t h e  n u m b e r  o f  

ones in the t-th row of e.. 
1 

j) L e t  u s  u s e  c)  w i t h  m = f3, ~ = m .  W e  h a v e  2~ a .a = 
s lj srn 

s a ~ . a ~ 5~. = 2] a ~ a. By i) = , = n i. Substituting this in our s is 3m" sm 6sin' nm~ is 6si' 

m' i' i' 
= 6~kniajm. If B ~ k, then a~r nJ 0 by b). This form of c) we obtain aij nrn , = 

proves j). 

5. Weak Isomorphism, H0mom0rphism and Weak Equivalency. 

5. i. Definitions, Let X, Y be stationary graphs. We say X is weakly isomorphic to 

Y (written X _~Y) if I XI = I YI and there exists a substitution ~ such that 
W 

~Xcr -1 ~ Y; c~ i s  c a l l e d  a w e a k i s o m o r p h i s m .  W e  s a y t h a t  Y i s a  h o m o m o r p h i c  i m a g e  

of X = (X..) if X.. contains a normal subcell ~ (cf. HI. 1) such that Y is weakly iso- 
zj 11 i 

morphic to the factor-graph of X by the system {~.} of normal subcells (cf. I4). 
1 

We say that X = ~i¢ Ixiei and Y = ~i¢~ JYjfj are weakly equivalent (written X ~ Y) 

~(k) k 
= a.. where if there exists a one-to-one map c{ : I-* J such that b~(i)~(j) 13 

e i e  j = 2~ai je  k ,  f i f j  = 2~b e k .  T h e  m a p  Cf i s  c a l l e d  a w e a k  e q u i v a l e n c y .  We s o m e t i m e s  

write (~ : X~ Y and ~(ei) = frn(i) instead of 9~ : I-* J. We say that this 
v 
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m a p p i n g  ~0 is  a n a t u r a l  one if d i m X  = d i m Y ,  X = ~ ; ie ix ie i ,  Y = NiEixi f i  and  

~0(ei) = fi ( that  i s ,  the  n a m e  of the  v a r i a b l e  is  c o n s e r v e d  u n d e r  the  m a p p i n g ) .  

A w e a k  e q u i v a l e n c y  is  c a l l e d  n a t u r a l  if the c o r r e s p o n d i n g  m a p p i n g  of I onto 

is n a t u r a l .  Of c o u r s e ,  a n a t u r a l  w e a k  i s o m o r p h i s m  is an  i s o m o r p h i s m .  

5 .2 .  P r o p o s i t i o n .  L e t  X = (Xij) be  a s t a t i o n a r y  g r a p h ,  Xij  = Nis Ixiei" If 

d (em)  = d (em,  ) = 1 for  s o m e  m e J , t h e n  X.. = X..  and  t h e r e  e x i s t s  a s u b s t i t u -  
n JJ 

t ion  g e S y m ( I X i i l )  ) such  that  X . . , - ~ X . . . g .  tl  1j 

P r o o f .  E v i d e n t l y  one can  a s s u m e  tha t  r g X  = 2, i = 1, j = 2. S ince  d(em)  = 

d (em,  ) =1 it fo l lows  f r o m  4 a )  tha t  tXll  I = !X23 I = n .  Then  e m l x 1 2  is  the 

X12 g-1 m a t r i x  of s o m e  s u b s t i t u t i o n  g. Le t  us s u b s t i t u t e  X12 by , X21 by gX21, 

-1 by  the  s a m e  Xll.  Then  e m I x 1 2  changes  in to  E and  X22 by gXz2g and  Xll  n 

X in to  an  i s o m o r p h i c  g raph .  S ince  0L(X) is  an  a l g e b r a ,  we have  Xll .  X12 ~ Xij .  

Hence  Xll .  E n ~  X12, tha t  i s ,  Xl l  ~ X 1 2 .  A n a l o g o u s l y ,  X22 ~ X 1 2 .  On the  o t h e r  

hand, X21. XI2 ~_ X22 and XI2. X21 ~_ XII imply XI2 ~ X22 and XI2 ~_ Xll. Thus 

XI2 ~ XII ~ X22. Q.E.D. 

5. 3. P r o p o s i t i o n .  Le t  X = ( X i j ) i  , j e I  be  a s t a t i o n a r y  g raph .  Le t  us  w r i t e  i ~ j  

if  t h e r e  e x i s t s  e m C  X..~j such  tha t  d (em)  = d (em)  = 1. Then  th i s  r e i a t i o n  ~ is  an  

e q u i v a I e n c y  r e l a t i o n .  In p a r t i c u l a r ,  I = q ) I  t (a d i s j o i n t  un ion)  w h e r e  i , j  e i t iff  

Proof. Let i ~j, j ~k. Let us take emCXij, enCXjk with d(em) = d(em, ) = 

= d ( e n )  = d ( e n ,  ) =1.  Then  e m e n C X i k ,  and  s i n c e  e m { x .  "~J and  e n l x j  k" a r e  p e r -  

m u t a t i o n  m a t r i c e s ,  the  m a t r i x  e e I i s  a l s o  a p e r m u t a t i o n  m a t r i x .  T h e r e -  
m n Xik 

f o r e ,  e m e n  = e t '  d(et) = d(e t '  ) = l,  t ha t  i s ,  i ~ k .  S ince  r e l a t i o n s  i ~ i  and  
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i ~j (iff j ~i) are evident, we have proved our assertion. 

5.4. Corollary. In notations of the preceding proposition, the stationary graph 

X is isomorphic to a stationary graph X = (Xij) such that Xij ~ Xmn 

i,j,m,n c I t and for any t. 

for all 

Proof. Let I t = {i I ..... it}. Choosefrom all XilJ, j ¢ It-il, a matrix ern(j) with 

d(em(j)) = d(eSn(j)) = I. By permutation of V(Xjj) we bring em(j)IX" . into Eq, 

where q = IXjjl. Then em(j)em(k) = EqC Xjk for j,k c It-i I, By 5. 3 this 

implies that Xij ~iKmn for all i,j,m,n c I t . Since the It do r~t intersect, the 

operation can be performed independently for all It, whence our assertion follows. 

b. 5. Proposition. If • : 07~-~ ~ is a weak equivalency, then ~0 is an iso- 

morphism of algebras, o'L and ~ have the same rank and degrees of a central 

decomposition (cf. 2). 

Proof. Since, by definition, ~ preserves the structure constants, ~ clearly is 

an isomorphism of algebras. 

From d(e.) = ~.a k. (if this sum is not zero (cf. 4e)), it follows that 
l j Ij 

d(~ (ei)) = d(ei). This implies the remaining assertions. 

5.6. Proposition. Let 0"C and ~ be split cellular algebras. If C)~ : 0-g ~ ~ is 

a natural weak equivalency, then ~ is an isomorphism. 

Proof. One has n = I~ul = l~I dimO'g = dim~= n 2 Let E e = 
' " n : ~ iE I 0 i 

= ~j¢ j0fj, where e i ~ gL, f.j E 3. By the preceding assertion, ~0(10) = J0 (since 

i ~ I 0 iff e~ = el). One can assume that I 0 = J0 = [l,n], I = J = [l,nZ]. After an 

~ p ~  permutation of the elements of a standard basis of the underlying space of 
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O%one can assume that 

e.1 =diag(O ..... 0,i,0 ..... O) , ie I O. 

A permutation of the underlying space of ~ brings f. into the form 
l 

f'l = e.1 for all i e I 0 = J0" 

Assume now that the underlying spaces of ¢-C and ~ and their standard bases are 

identified and e.1 = f'1 for all i e I 0. I assert that in this united basis the equality 

e = f holds for all rn c I. Indeed, if m e I, there exists a unique pair i, 
m m 

j e I0 ,  s u c h  t h a t  e i e m e j  fi O. T h e n  s i n c e  ~ i s  a n a t u r a l  w e a k  e q u i v a l e n c y ,  w e  

a l s o  h a v e  f . f  f .  fi O. F r o m  t h e  a b o v e  f o r m  of  m a t r i c e s  e_ i = f i '  i e Io ,  one  c o n -  
l m 3  ' 

cludes that e = f for all m e I as asserted. 
m rn 

6. S o m e  N u m e r i c a l  I n v a r i a n t s  o f  C e l l u l a r  A l g e b r a s .  T h e  n u m e r i c a l  i n v a r i a n t s  

introduced below are used in Section N. 

6 . 1 .  L e t  X = ( X i j ) i , j  e I be  a s t a t i o n a r y  g r a p h .  L e t  u s  a s s u m e  t h a t  w e  a r e  g i v e n  

a p a r t i t i o n  ~ o f t h e  i n d e x  s e t  I :  I = q J l r n .  I f  p = ( p I , p Z  . . . . .  p t )  i s  a v e c t o r  

w h o s e  c o m p o n e n t s  Pi  l i e  in s o m e  l i n e a r l y  o r d e r e d  s e t ,  l e t  u s  d e n o t e  by  P o r d  t h e  

vector (Pil ..... pit) with pi l>pig >''" >--pi t" If p = (Pi)icl we denote by 

Pord rv',Ii the vector whose components are ordered only within each I and corn- 
m 

ponents numbered by different I ' s donor mix. When we compare vectors of 
rn 

different l e n g t h ,  w e  a s s u m e  t h a t  s h o r t  v e c t o r s  a r e  s u p p l e m e n t e d  b y  z e r o s .  

6.2. Let Xij = E xke k. Put 
T( i ,  j ) 

P l ( X i j )  = (d (e i l )  . . . . .  d (e  i )), w h e r e  {i 1 . . . . .  i r }  = T ( i , j ) ;  
r 

P l ( X i j )  = ( ] X i i l ,  I X j j l ,  d i r n X j j ,  ( ~ l ( X i j ) ) o r d ) ;  
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~2(Xii ) = (~l(Xij))j(I; 

/J2 ,~ (Xii) = (I xiil, dim Xii,  ~l(Xii), (/J"g (Xii))ord, 7[ ); 

~3,~ (X) = (~2,~ (Xii)i~ I ); 

~3,T~ (x) = (rgX, {~3,[I (X))ord,~)" 

6. 3. Remark. This set of invariants is sufficient for our immediate goals. Let us 

note, however, that one can consider iterations of these invariants. For example, 

one can substitute IXii I in ~l(Xij) by ~2,~ (Nil)' etc. , until stabilization. 

Furthermore, one can consider both matrix and vector 

invariants. For instance, one can consider the matrix (~2,7(Xij))i,j c I" It is a 

matrix with linearly ordered entries. For this matrix one can construct its 

stationary graph (cf. M3) and subsequently compare such graphs. One can also 

put into correspondence with e the matrix i m (amj) and thereupon compare these 

matrices. One can substitute the latter matrices into the definition of ~l(Xij). 

This leads to tensors of order 3, etc. 



F. CELLULAR ALGEBRAS ARISING LN THE THEORY OF PERMUTATION GROUPS. 

Although cellular algebras arise in different contexts (in our case 

as the result of graph stabilization) (cf. also [Hi 3]), the most important examples 

of cellular algebras are the centralizer rings of finite permutation groups (see below). 

It is known (the graphs of the Z6-family of Section U are examples) that there exist 

cellular algebras which are not centralizers. However, centralizer rings provide 

u s with a variety of notions and approaches which prove to be useful. Most of 

the constructions of Sections G-Q are based on the corresponding notions in per-, 

mutation group theory. 

i. Let G be a permutation group on a set M = [i, n], and 

orbits. Letus considerthevectorspace V with basis El,... 

action of G on V by 

M I ..... Mr be its 

, f . .  We d e f i n e  a n  
n 

~. = ~ .. 
I (71 

Let ~(G,M) be the centralizer ring of G, that is, 

-I 
~(G, M) = {B E ~n : g Bg = B for all g ~ G}. Then }(G, M) is a cellular alge- 

bra (cf. [HIE] and 2.3 below) with respect to the basis {~.}, and {~.} is a 
1 l 

standard basis of V. Below we s h a l l  c o n s t r u c t  a s t a n d a r d  b a s i s  of  ~ ( G ,  M). 

2. If x ~ M, then G denotes the stabilizer of a point x. 
x 

Let us choose a point 

x. in each orbit M. of G on M. Let Dli j .... Dr(i, on x i ' j), i, j be orbits of Gx. 
I 

M . .  
J 

2, I, We construct graphs Frnij in the following manner. We connect the point 

gx i with all points of the set gDmij, for all g ~ G. This definition does not 

d e p e n d  on  g. S p e c i f i c a l l y ,  i f  gx  i = h x  ,1 t h e n  h - l g  ~ Gx.  , a n d  t h e r e f o r e  
1 
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h-lgDmij 

I ~ ..° 
m13 

= Dmij, i.e., gDmi j = hDmi j. Let emi j be the a d j a c e n c y  m a t r i x  of 

2.2. Assertion. [Ihematrices e .. form a basis of the centralizer algebra 
m13 

~ ( G ,  M). 

P roo f .  We sha l l  w r i t e  >(G) for  ~ (G ,  M). F i r s t ,  a l l  m a t r i c e s  e m i  j a r e  in 

~ (G) .  Ac tua l l y ,  if  h ~ G, then in Fmi  j the i n c i d e n c e  of hgx i to poin ts  of 

h g D m i  j i m p l i e s  tha t  h ~ A u t F r n i j .  Hence  e m i  j c o m m u t e s  wi th  a l l  h ~ G. 

Take now A ~ ~ (G). Since Dmi j are orbits of Ox., the conditions 
I 

hx. = x ; hAh -I = A imply that in row x. of A all positions corresponding to 
i 1 1 

D .. are occupied by equal elements, say a ... Then the matrix 
mlJ m l  3 

B = A - ~ amijemi j is in ~(O), and all elements of row x. of B are equal 
m,i,j I 

to zero. Using the transitivity of G on Mi, and the condition gBg -I = ]B, g c G, 

one establishes that B = 0. Q.E.D. 

2. 3. C o r o l l a r y .  > (G,  M) is a c e l l u l a r  a l g e b r a  wi th  uni t~  and {emi j} is  i t s  

s t a n d a r d  b a s i s .  

D --x.. 
m(i), i, i 1 

Unity of ~(G, M) is the sum of matrices era(i), i,i' where 

2.4. Remark. There is no inverse correspondence, that is, in general 

~ (G, M) = ~(H, M) does mtimply G = H. As a trivial example, one can take the 

case G = SymM. Then for any doubly transitive group H on M one has 

(G,M) = ~(H, M) = Sn. A less trivial (but nonetheless very special) example is 

given in G2.6. 
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3. Remark. The purpose of our constructions is the following • If a graph I ~ 

is given, how does one construct the matrix algebra ~(AutF, V(F)). Every 

stabilization (cf. Sections C,M, N, O) draws th~ algebras ~ (F) and ~(Aut F, V(F)) 

more and more together. 

4. Let us once more point out the meaning of the notions of Sections D and E in 

the case when the cellular algebra is the centralizer algebra of some permutation 

group. Let G be a permutation group of a finite set M, A = ~(G, M), i = X(A). 

If {e.} is a standard basis of 0~, then G acts transitively 4.1. Graphs e . 
m 1 

on edges of every graph e m. This explains our aspiration to find differences be- 

tween non-diagonal variables of a graph. 

4.2. If X = (Xij) (of. E2), then V(X..)11 is ananalogue ofanorbit ofagroup. 

particular, for X the sets V(X..) are orbits of G (and also of AutX)o 
ii 

In 

4. 3. If emC Xij, then d(em) is an analogue of the length of the orbit of the stabi- 

lizer of x c V(Xii ) on V(Xjj). For X, this number is equal to the length of an 

orbit of O on V(X ). 
x jj 



G. S O M E  C L A S S E S  O F  C E L L U L A R  A L G E B R A S .  

Some general classes of cellular algebras are constructed below. 

Most of them are modeled on the corresponding notions of permutation group 

theory or of the theory of algebras. Some of the classes introduced below are 

used in the canonization algorithm of Section R. 

The description of the properties of some classes requires the use of 

results of subsequent sections. We introducethemnowinthe hope that they 

can be useful as a frame of reference. 

1. G r o u p  R i n g s .  

1.1. To e a c h  f i n i t e  g r o u p  G t h e r e  c o r r e s p o n d s  the  c e l l  2K[G]. It is  d e f i n e d  in  

t h e  f o l l o w i n g  m a n n e r :  

i) V = •[G] i s  t h e  g r o u p  a l g e b r a  of G, and  t h e  s t a n d a r d  b a s i s  of  V c o n s i s t s  of 

e l e m e n t s  of  G; 

i i)  a s t a n d a r d  b a s i s  of  o u r  c e l l  c o n s i s t s  of t he  o p e r a t o r s  of l e f t  m u l t i p l i c a t i o n  

e. = L : g-*gig, for all g e G. 
I gi 

We call this cell the group algebra (or ring) of G. 

1.2 .  C l e a r l y  d ( e . )  = 1, f o r  e v e r y  e l e m e n t  of a s t a n d a r d  b a s i s  of  2~[G]. 
1 

verse assertion is also true. 

The c on- 

Proposition. Let o~ be a cell. 

G is an appropriate group. 

If d(ei) = I for all e.,z then O~L = ~[G], where 

Proof. Since d(ei) = I, e. is a permutation matrix. Since 0-~ is an algebra, 
I 

eie j = em(i,j). Therefore, matrices e.1 form some group G. Clearly, 

= ZIG]. 
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i. 3. Remark. 2gIG] is the centralizer algebra (cf. the preceding section) of the 

permutation representation of G on itself by right translations. 

2. D i r e c t  Sum.  

Z . i .  L e t  Y = ( Y i j ) i , j  e [ i ,m] '  z = ( z i j ) i , j  e [i,n] 

Let us define the graph X = YO Z = (X..) 
13 i ,  jE [ 1, r e+n]  

X. .  : Y. .  f o r  i , j  e [ 1 , m ] ;  1j 1j 

X i + m , j + m  = Z i j  f o r  i ,  j e [1 ,n ] ;  

X. .  = c o n s t  f o r  i e [1, m ] ,  j e [ m + l , m + n ]  
i j  

be disjoint stationary graphs. 

by the conditions: 

o r  f o r  i ( [ m + I , m + n ] ,  j ( [1, m ] .  

I n  a d d i t i o n ,  l e t  t h e  X . .  b e  a l l  p a i r w i s e  d i s j o i n t ,  a n d  d i s j o i n t  f r o m  Z a n d  
1J 

Y. The  g r a p h  Y $ Z w i l l  b e  c a l l e d  t he  d i r e c t  s u m  of Z a n d  Y. It  i s  d e f i n e d  

up  to  e q u i v a l e n c e  a n d  d e p e n d s  o n l y  on the  e q u i v a l e n c e  c l a s s e s  of Z a n d  Y. 

2 . 2 .  P r o p o s i t i o n .  A u t X  = A u t  Y X A u t  Z ( d i r e c t  p r o d u c t  of p e r m u t a t i o n  g r o u p s ,  

cf .  2 . 6  b e l o w ) .  

P r o o f .  A u t X  p r e s e r v e s  V ( Y ) C V ( X )  a n d  V ( Z ) ~ V ( X )  s i n c e  Y a n d  Z a r e  

d i s j o i n t .  T a k e  g e S y m V ( Y ) C S y m V ( X ) ,  g e A u t Y .  T h e n i t f o l l o w s f r o m t h e  c o n -  

s t a n c y o f t h e b l c c k s X i j  , i ~ [1, m ] ,  j e [ m + I , m + n ] ,  t h a t  g ~ A u t X .  Q . E . D .  

2. 3. P r o p o s i t i o n .  If  Y a n d  Z a r e  s t a t i o n a r y  g r a p h s ,  t h e n  X = Y @ Z is  a l s o  

s t a t i o n a r y .  

Proof. Evident. 

2.4. Proposition. Let Y, Z be stationary graphs, 0-6= 0-~(Y ~ Z), ~= 0L(y), 

~=gL(Z). Let 0L, ~, 0~ be ideals in the algebras c<,~,~, respectively, 



complementary to the id~ls~, ~ ,  

algebras ). 

43 

of L6. Then ~-~ = ~ e ~  (direct sum of 

Proof. Evidently follows from definitions of the direct sum of graphs, and of the 

ideals ~ , ~ ,  ~ (cf. L6). 

2.5. Remark. This assertion shows that the notions of direct sum for algebras and 

for cellular algebras are rather close. 

2.6. Remark.  The direct  sum of graphs is an analogue of the direct  product of 

permutation groups. Namely, let G and H be permutation groups acting on V 

and W respectively. Let X and Y be the stationary graphs of the central- 

izer rings ~(G,V)  and ~(H,W),  respectively.  Then G × H  acts on V ×W, and 

X $ Y is the stat ionary graph of ~(G XH, V XW). 

it is possible, however, for some group G acting on V, that the 

stationary graph of ~G,V) is a direct sum, but this action is not a direct 

product of actions of two different groups. This happens, e.g. , if G has two 

orbits V 1 and V 2 on V, and G ,x x e VI, acts transitively on V 2 (since XI2 = 

const by F4. 3), A more concrete example: Take G = Sym(5), 

V 1 = Sym(5)/Sym(4), V 2 = Sym(5)/NSym(5)Z 5. Then IGI = 120, IViI = 5, IV21 = 6. 

For emC X12 we have by E4a): 5. d(em) = 6. d(em), Therefore, 6 divides d(e m) 

and since d(em)<6 , we have d(e m) = 6, whence XI2 = const. 

On the other hand, Aut(X (9 Y) is the direct product of AutX and 

Aut Y. 

3. Tensor Product.  

3. i. Let Y, Z be graphs. Define the graph X in the following manner: 



w h e r e  x i j ,  kd = Xrrm, r t  

p r o d u c t  of X and Y. 
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X = Y ~ Z = (xi j  , k l  ), 

iff Yik = Ymr and Zjd = Znt. Y~z is called the tensor 

3.3. Lernma. If Y and Z are stationary graphs, then Y ~ Z is also a sta- 

tionary graph and rgX = rgY. rgZ. 

Proof. Evident. 

3.3. Corollary. 

3.4. Proposition. 

6L = ~(Y ~ Z), then ~Yl =~® ~ (tensor product of algebras). 

Proof. 

algebra FL. 

If Y and Z are cells, then X = Y ~ Z is also a cell. 

If Y and Z are stationary graphs, ~=cr6(Y), ,~ =~.~(Z), 

Proof. Let IYI ~m, IZl ~n. 

matrix E ® Z (resp. Y ® E ). 
n m 

3.6. Remark. Theorem J5.4 shows that Proposition 3.5 is close to a charac- 

terization of tensor products. 

3.5. Proposition. If Y and Z are cells, X = Y ~ Z, then X 

normal subcells ~ and ~ such that (cf. J5.4). 

a) X/~: Y, X/~ = Z; 

b) x(~)~Z, x(£)~Y. 

contains two 

As a generic point of ~ (resp. ~) one can~e~o~ 

Our assertions are now evident. 

3.7. Remark. A tensor product of graphs is analogous to both the tensor 

product of algebras and the direct product of permutation groups acting on 

Follows evidently from the interpretation of X as a generic point of the 
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the direct product of their domains. Explicitly, if G and H are permutation 

groups acting on V 1 and V2, respectively, and if X and Y are stationary graphs 

corresponding to >(G. V I) and 7 (G. VZ) , respectively, then X ~ Y corresponds 

to >(G XH, V I ×V 2). 

4. Wreath Products. We shall define this construction only for cells. 

4. I. Let YI' YZ ..... Yn be a set of naturally weakly equivalent cells (cf. E 5. I) 

of  d e g r e e  m ,  a n d  l e t  Z b e  a c e l l  of  d e g r e e  n d i s j o i n t  f r o m  Y. .  L e t  Z = x E  + 5  
1 n 

where ~ has zero diagonal and entries different from those of YI ..... Yn" Put 

X = (YI' .... Yn)Wr Z = ~h.1 ~ Y'+~I ~ In' 

and let us call X the wreath product of the system {Yi } with Z. (Recall: h.1 is 

the matrix with i only in position (i, i) and 0 in all other positions. ) 

4. Z. Remark. A definition closer to that of group theory would be obtained 

in the case when YI = Y2 = "'" = Yn and Y.I are cells (cf. 4.5 below). In this 

case the cell (cf. 4.3 below) X would be a subcell of the cell Y1 $ Z. 

4. 3. Lemma. X is a cell. 

Proof. Evident. 

4.4. Lenarna. If ~ is the normal subcell of X with the matrix ~'hi ~ Yi' then 

x / ~ :  z. 

Proof. Evident. 

4. 5. Let [i n] =~.3I t where Y. is isomorphic to Y. for all i,j ¢ I t . 

that there exists no isomorphism of Y. and Y. if i and j do 
i j 

Suppose 
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lie in the same l t. Let G be the subgroup in AutZ preserving all It, and G t be 

the restriction of G to I t . Let H = }liAut(hi ~ Yi) (the direct product of per- 

mutation groups), H t = AutYi, i ~ I t . 

Proposition. AutX = [H I • IGI; AutX permutes the sets V(h i 8 Yi) in the same 

manner as G acts on L The restriction of AutX to [.9icltV(hi ® Yi) is HjG t 

(the wreath product of H t and Gt). 

Proof. Clearly, AutX preserves the partition of V(X) into the sets 

V(h.1 (~ Y')'I By 4.4 it permutes the sets V(h i ® Yi) as some subgroup of AutZ. 

Let us denote this subgroup by O. If there is no isomorphism of Y. onto 
1 

Y., then G cannot transfer i in j. Hence G preserves each I t . 
3 

-i 
If g e AutX, there existsag' ~ O such that g'g preserves all 

V(h i @ Y.) and induces an automorphism on each of them. Now our assertion 
1 

follows immediately. 

4.6. Proposition (compare L 7). The algebra ~TC(X) contains an ideal defined 

over (~ and isomorphic as an algebra to the algebra OYI(Z). 

Proof. The subalgebra with a generic point X C defined in H 7 Jhr ~ne normal sub- 

cell ~[y from Lernrna 4.4 is, clearly, an ideal. The rest is evident. 

4.7. Example. Let YI ..... YI5 be all distinct graphs of the 25-family (cf. 

Section U), and let X be the simplex, Z = XEn+Y~n, where x,y ~ Yi' i e [1,15]. 

Then 

X = (YI ..... Yl5)wr Z 

is a cell (such a cell is called correct, cf. J6). The group AutX preserves all 

subsets [15j+l,15(j+l)] for j = 0,I ..... 14, and it acts on [15j+l,15(j+l)] as the 
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group Aut Yj+I" Moreover, AutX is the direct product of the groups Aut Y 
J 

4.8. Although example 4.7 shows that the automorphism group of a wreath 

product of graphs can be very small, the notion of the wreath product of graphs is 

an analogue of the wreath product of groups. Indeed, let 

G and H be transitive permutation groups acting on 

V and W. Let us assume that V = [l,n]. Let X and Y be the stationary graphs 

of ~(G,V) and ~(H,W) respectively. Set X I = X 2 = ... = Xn = X. Then 

(X 1 ..... Xn)WrY corresponds to j (GfH, V XW) (here GfH is the wreath product 

of G with H, cf. [Ha2]). 



H. IMPRIMITIVE CELLS AND CONSTRUCTION OF FACTOR-CELLS. 

The notions introduced in this section are modeled on the corres- 

p o n d i n g  n o t i o n s  of  t h e  p e r m u t a t i o n  g r o u p  t h e o r y .  As  in the  g r o u p  t h e o r y ,  t h e y  

serve to reduce the study to the case of "primitive" cells (quotation marks can be 

omitted here). Probably, the passage to the quotient can be used in an algorithm 

of graph identification. Our use of this tool in the algorithm of Section R is in- 

d i r e c t ,  a n d  i t  r e l a t e s  on ly  to  c o r r e c t  s t a t i o n a r y  g r a p h s .  

The a n a l o g o u s  s i t u a t i o n  in t he  p e r m u t a t i o n  g r o u p  t h e o r y  is  a s  f o l l o w s .  

L e t  G a c t  t r a n s i t i v e l y  on V. If V i s  i m p r i m i t i v e ,  t h e n  

V = <J V. and gV. is some V. for g e G. This gives the action of G on 
i¢ [I, n] i 1 3 

[1,n]. In the terminology introduced below, ~(O,[l,n]) is said to be the quotient 

of ~(G, V) by the normal subcell (cf. definition below) defined by V = <_) V.. 

ic[l,n] i 

1. L e t  tr6 be  a c e l l  of d e g r e e  n and  {e.} be  i t s  s t a n d a r d  b a s i s .  
l 

t .  1. D e f i n i t i o n s .  L e t  ~ be  a s u b c e l l  of  0~ , f 0 '  fl . . . . .  fk  be  a s t a n d a r d  b a s i s  of  

~ .  We c a l l  ~[~ a n o r m a l  s u b c e l l  if  

i) f o r  e v e r y  i <  k t h e r e  e x i s t s  j s u c h  t h a t  f. = e . ;  
x j 

i i )  ~ e x i s t s  a p e r m u t a t i o n  of a s t a n d a r d  b a s i s  o f  V w h i c h  b r i n g s  C = ~ i <  kfi  

into b l o c k - t r i a n g u l a r  f o r m  

<00 0 t 
* C z 0 . . .  0 

* , * C t • 

The  p r o p e r t y  " d i s  a n o r m a l  s u b c e l l  of 01. " is  d e n o t e d  by  ~ < ~  t)L. 

We s h a l l  s h o w  b e l o w  ( s e e  L e m m a  2) t ha t  C c a n  be  b r o u g h t  in to  
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block-diagonal form with diagonal blocks of the same degree, C = ]E ~ I . We 
r m 

shall write I~I = d(C) and call I~I th___~e de~ree of the normal subcell ~. The 

r 
fact mentioned above also implies that ~i< kxifi is of the form Zi=lhi ~D X i, 

where every X. is the matrix of a cell and h. is the diagonal matrix with ~qe only 
1 I 

non-zero entry equal to one at position (i,i), 

the normal subcell ~, or its generic point. 

is simply X.. 
i 

~i< kxifi is called the matrix of 

If all X. are isomorphic, X(~) 
I 

Sometimes, if it does not lead to misunderstanding, we call 

{fi}i < k a standard basis of the normal subcell ~. One can assume that f. = e. 
1 i 

for i < k. We sometimes write e C, for matrix C to erphasizeits dependence 

on ~. We write e. ~ ~(f if e.(~ C = e.. ~rrm~ices e. c ~ are called the ele- 
I I I i ..... 

ments of a standard basis of ~. We write ~ = i if C = E n, n = l(yLl. 

We say that a normal subcell ~ is contained in a normal subcell 

(notation ~ ~_~) if e~[ ~_e~. A normal subcell ~ is trivial if either 

e~= En or ed, ~ =I n- 

A cell which contains no non-trivial normal subcell is called 

primitive; in the contrary case it is called imprimitiye. 

If ~ is a normal subcell of ~r6 and, as above, 

r 
~.i<kxifi = Ei=lhi ~D Xi, we call the system of sets V(h i ~ X.)l the system of im- 

primitivity in ~rt, associated with ~. Each set V(h i ~D Xi) is called a set of 

imprimitivity in 07.. 

Henceforth, up to the end of the section we assume that k is fixed 

and f. = e. for i< k. 
1 I 

I. 2. Examples. 

i. 2. i. Let us first take the case of ~(O, V), O an imprimitive transitive 
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permutation group of V. Let V = ~ V. be some imprimitive system for 
i~[1,n] i 

(G, V). Le t  G. be the subgroup  of G p r e s e r v i n g  V. , and X. be the s t a t i o n a r y  
1 1 1 

g r a p h  of ~..(G i ,  Vi). Then l~h.1 ~ X.1 is the  m a t r i x  of a n o r m a l  subc e l l  in ~ ( G ,  V). 

The c o r r e s p o n d i n g  i m p r i m i t i v i t y  s y s t e m  i s ,  of c o u r s e ,  {V.}. 
1 

I. Z.Z. All graphs of C IZ are imprimitive cells. 

i. 2. 3. Simple examples of primitive cells yield oriented cycles with prime 

number of vertices. 

i. Z. 4. Petersen' s graph is an example of a primitive cell of degree i0. 

three basic graphs: 

e 0 : loops, graph; 

el: ~ 

e 2 : the c o m p l e m e n t a r y  g r a p h  of e 1 . 

It has  

i. Z. 5. Examples of imprimitive cells are constructed in G3, 4. 

2. Lemma. Let ~ be a normal subcell of a cell ~. If C = ~]i< kei (in the 

assumptions of I. i) has a block-triangular form, then it can be brought into 

block-diagonal form, such that diagonal blocks contain no zeros and have pairwise 

equal degrees. 

Proof. Let us consider fk and f~. They have the following form: 

fk = 

\ 
\ 

11..-i1 1 1 

0 A 

<----v J 
d 

T 

fk = 1 1 .. 
~ . .  . A '  d 

\1 i 
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By definition of a cell (cf. DI.2) each row of A contains d ones. Therefore, 

A = t d. But  s i n c e  f~(~  fk ~ O, we have  f r o m  Dl. l i i i )  t ha t  fk = fk" 

Set C = ]~ e..1 Since fk = fk' C = In-f k (where 
i<k 

n = 10~i ) ,  w e  h a v e  

C' = C, whence the first assertion of our lemma. Let F be the graph whose 

adjacency matrix is C-]En, then F is a simple graph. Let ~, %,.. ., I r be its 

connected components. By our assumption, r >__ 2 Let us renumber fllevertices of 

F in such a way that C is brought to the form 

C 1 0 0 ... 0 

0 C g 0 ... 0 

0 0 C 3 ... 0 

0 0 0 C r 

where Ci-EIc il is the adjacency matrix of F..I 

Let us show that C i = I icil. We have ~n C m = m=l ~ i < kaifi" 

n m 
Clearly, a k = 0. Since the F.t are connected, we have Em=IC i ~llcil. There- 

fore, by Dl. liii)we have Zi<kfi = •i<kei = llci]' whence C i = llCi]. 

Since I Ctl = d(C) = Ei<kni = m does not depend on t, we have 

I Ctl = m for all t, i.e. , C t = Ira, whence the last assertion of the leno_rna. 

3. Bringing C into a block-diagonal form, we define a partition of the matrix 

X = ~x.e.1 l into (m×m)-blocks Xij , 

X = 

I x 
XII XI2 --. Xrr \ 

°,, ,,, ...... ! 
/. 

X r l  XrZ , . -  X r r  / 
\ , 

Proposition° Any two rows (and columns) of blocks of the matrix X = (Xij) either 

have coinciding composition or have disjoint composition. 
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Proof. Let ~i be a row of block Xij and ~2 be a row" of Xkl. Suppose that 

~ixij ~ ~2xij, that is, that our rows have different composition. Then there 

evidently exists a variable Xq such that %ixij = PlXq + .... ~Z x..lj = p2Xq + " " " 

and Pl ~ Pz" Consider then the product e - C. All entries of the row ~I of this 
q 

matrix are equal to Pl and all entries of row o 2 are equal to P2" By definition 

of a cell, it follows from the above that ~I and (~Z have no variables in common, 

that is, our assertion holds. 

Let us note that the above proof also holds for two rows of one 

block. 

4. Definition. Blocks Xij and Xkd are called similar (notation Xij ~Xkd ) if 

for every row (column) of Xij there exists a row (column) of Xkd with equal 

c o m p o s i t i o n  and  if the  s a m e  ho lds  for  the p a i r  Xkd , Xij .  

Proposition. All diagonal blocks are pairwise similar (in other words, all cells 

X.. are pairwise naturally weakly equivalent). Every non-diagonal block is not 
11 

similar to a diagonal one. 

Proof, Both assertions follow from 2 and from the definition of a cell. Indeed, 

all variables x , i < k, are in diagonal blocks, and all other variables are outside 
i 

diagonal blocks. 

Proposition. Two non-similar blocks Xij and Xkl have no variables in 

common. In other words, if eq has ones in X.13., then eq~Xkl = 0. 

Proof. Let Xij ~ Xkl. Then, by definition, Xij contains a row ~ such that all 

rows of Xkl have different (from ~) composition. By Proposition 3, ~ and Xkl 

have disjoint composition. For any column 7 of Xij, Xkl does not contain the 
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element T~!~ of this column (since it is an element of o). ~ekrre, the composi- 

tions of 7 and Xkl are disjoint (by Proposition 3 applied to columns). Since I" 

is an arbitrary column of Xij , our assertion is proved. 

6. Proposition. Let Xij ~Xkl be similar blocks of X. Then 

EX.. Xuv = EXkl Xuv' 1j 

that is, similar blocks have the same composition. 

Proof. It is sufficient to show that Xij and Xkl have an equal number of rows 

of any given composition. Let a I be a row of Xij, and suppose that Xij (resp. 

Xkl ) contains Pl (resp. pz ) rows of the same composition as al" Note that by 

Proposition 3 no variable of the row °l lies outside those Pl (resp. pz ) rows. 

Therefore, if Pl ~ Pz' any two columns of Xij and Xkl differ by their com- 

position. This yields a contradiction to the condition Xij ~ Xkl. 

7. Definition. Let 0-L be a cell with unity, X = Ex.e. its graph, ~ a normal 
i 1 

subcell of d~6, m the degree of diagonal blocks of C, n = rn. r. A factor-cell is 

a graph Z (and its algebra 0"6(Z)) of degree r defined by the conditions: 

z.. = z iff X.. ~X 
13 st 13 st" 

The notation is Z = X/=C ~ and gt(Z) = Ot/~. ]]he factor-cell ~l~/=~ is also called the 

quotient of Ft by =(~ . 

Theorem. The factor-cell oZ/~ is a cell. 

Proof. Let us consider the matrix X C ~ Z ~9 Im of degree n. (It is obtained 

from X by changing each block Xij into a constant block z k. I m in such a man- 

her %hat non-similar blocks give rise to different variables. ) 
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To begin with, let us note that in the product X C- X C, in place of 

entries of some block Xij , there arise equal polynomials. Further, let us show 

that in place of equal entries of matrix X C in X C. X C there arise equal poly- 

nomials. Suppose it is false for blocks Xst and Xpq, Xst ~Xpq. Set 

gij = e S~X.E /0era" Thenone has gij. gkd~hXst =aim, gij-gkdf~Xpq=blm, 

m lj 

a / b, for some i, j, k, d. By definition of a cell, this contradicts our assumption 

that X Q.E.D. pq ~ Xst. 

Thus we have just shown that X C is a generic point of an algebra 

(i.e. , (Xc)ij = (Xc)kd implies (X C.xC)ij = (X C-XC)kd ), Since X C ~Z ~9 Ira, we 

have shown that Z is a stationary graph. Since by Proposition 4 the diagonal 

entries of Z are equal, it follows that Z is a cell. 

8. i. Remark. If ~ and ~ are cells, then there exists an imprimitive cell 

~r6 with a normal subcell ~ "isomorphic" to ~ (in the sense that 

El< kxiei = E r ~) X(~)) such that 0l/~.~w~. Examples of such cells ot are given 

in G3, 4. 

8.2. Remark. In the case ~I = ZIG], normal subcells are subcells Z[H], where 

H is a subgroup of G. Factorization corresponds to the construction of the 

algebra of double cosets H\G/t~I, which is ~ (G, G/H). The sense of factorization 

in the general case of an imprimitive group (G, V) was described in the introduc- 

tion to this section. 

9. A Geometrical Interpretation of the Notions of Subsections 4-7. Let us con- 

sider a cell with unity 4-6 and its graph X. Let 0q/ contain a normal subcell, 

and let e 0 = En, e I ..... ek_l, be its basic elements chosen as in I.I. Let us con- 

sider the matrix A = E0<i<ke i . 
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Lernma Z. A is the adjacency matrix of the disjoint union of r complete graphs 

F1 ..... r having the same number m of vertices. The set of the edges of the 
r 

graph X which connect a ~ V(%) with vertices of ri, is characterized by a row 

of the block X... 
13 

If a,b ~ V(X), then Proposition 3 asserts that the setsofthe edges from 

a to V(l'i ) and from b to V(F.) are either the same (as to colouring and multi- 
J 

plicity) or have no colour in conLrnon. (The cases a = b and/or F. = F. are not 
i j 

excluded. ) Finally, Proposition 5 and 6 assert that for any i, j, k, d the sets of 

edges leading from V(Fi) to V(%) and from V(rk) to V(rd) are either the same 

or have no colour in cono_rnon, 

The factor graph is constructed in the following manner. All 

vertices of each I ~. are identified, and edges connecting new vertices "inherit" 
1 

the "colour" of the set of edges leading from V(Fi) to V(%). 

i0. Definition. An oriented graph 1 ~ is called strongly connected if there is an 

oriented path from any of its vertices to any other vertex. If, however, for every 

two vertices a and b at least one (and, possibly, only one) path exists from a 

to b or from b to a, F is called connected. 

ii. Lernrna. Let 0-6 be a cell and {el} its standard basis. Let A = Eie de i be 

the sum of some basic graphs. Let F be the graph whose adjacency matrix is A. 

If F is connected, it is strongly connected. 

Proof. 

from a. 

Let a ~ V(F). Let D(a) be the set of vertices which can be reached 

Put 

A ={b~ V(r):b/a, a~ D(b), b~D(a)} a 

B --{b~ V(r):b/a, a~ O(b), b~ O(a)} 
a 
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C = {b e V(F) : b / a, a / D(b), b • D(a)}. a 

I t  i s  e v i d e n t  t h a t  V ( F )  = a ( . J A  ( f i b  ! ~ J C  . 
a a a 

Now, in the graph F, from a there exist paths only to the points of 

B (.9 C . Consider b e A . Then from b there exist paths to points of 
a a a 

B ~-)C qJa and, possibly, to some points of A . If A ~4, then D(a) and 
a a a a 

D(b), b ~ A , have unequal cardinality. This contradicts CI0 and D3ii). Hence 
a 

A =4- a 

Hence B KJC t_)a = V(F). Since by CI0 this equality holds for 
a a 

e v e r y  a e V ( F )  i t  f o l l o w s  t h a t  F is c o n n e c t e d .  

12. Proposition. A cell 0"5 with unity is imprimitive iff it contains a discon- 

n e c t e d  b a s i c  g r a p h  e . ,  i >  O. 
1 

Proof. If iJ is a normal subcell of grg , then every e. ~ ~ is disconnected. 
l 

Suppose now that e I is disconnected. Put 

It is clear from geometrical considerations that the graphs e. for which b i / 0 
l 

are disconnected, and that the vertices of each of their connected components are contained 

intheverticesofsomeconnectedcomponentof e.. It may be assumed that b i ~ 0 
1 

for i= 0,i,2, .... k-l, and b. = 01 for i> k. Then ~i<kei=Er ~91m for some 

r and m .  Therefore, e0,e I . . . . .  ek_ 1 is a standard basis of some non-trivial 

normal subcell. Q.E.D. 

13. Theorem. A cell 0L is imprimitive iff there exists a (proper) subset I< of 

indices such that matrix B = ~iekei has two equal rows and B ~ In. 

Proof. Let ~ be a normal subcell of ~t. Then fk (in notations of i. i) 
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satisfies our conditions. 

Conversly, let B = TiE Kei # I n contain equal rows. Let 

~i =(~2 = °.. =aq be the first q rows of B and suppose that (~s ~ ~i for all 

s > 0. ~l%is is not restriction of generality since it can be obtained by simultaneous 

permutation of rows and columns. ) Let d(B) = d. Consider the product B. B' . 

All entries of the principal (q Xq)-minor M of the matrix B. B' are equal to d. 

Furthermore, all other entries of the first q rows are< d. By defini- 

tion of a cell it follows that B-B' = ~i~l<idei+ ~'x~z% Z ~ a e ,x i where ai< d for 

i ~ l<l 2. As follows from the previous discussions, from DI. liii) and from 

Lenuna ii, all e i, i ~ K I, are disconnected. Thus our cell is imprimitive by 

Proposition 12. 



I. CONSTRUCTION OF THE QUOTIENT IN THE CASE 

OF CELLULAR ALGEBRAS OF RANK GREATER THAN ONE. 

Similarly to the definition of factor-cells (i.e.~ rank one case~ see the 

preceding Section)~ a definition of the quotient can also be given for general 

cellular algebras. Such a definition is needed to complete the picture° 

It is in this generality that the notion of the quotient may be used in the study of 

isomorphisms of graphs. 

Since the extension to the general case of cellular algebras does not require any 

new ideas~ we give in this Section exact definitions and omit proofs (with the 

exception of the proof of Lemma 2). 

I. Let X = (Xij) be a stationary graph. Let ~i be a normal subcell of Xii and 

V i be the corresponding partition of V(Xii) into imprimitivity sets. We V(Xii) = t 
i=l 

do not exclude the cases Ivit I = i for all t and IV~] = iXiil. Set N i = IXiil, 

k i I £ii C = e = ~ e . The partition of V(Xii ) into sets V i 
= ~ i ~ i em~ ~i m t 

induces the partition of matrices Xij into (k i × kj)-blocks Xij~t s = X(Vt,VJs). 

Definitions. 

I.I. Two rows (columns) 

O ~ T)~ if 

f; cX.. 
lJ~tS 

and T ~ X 
lj,pq 

are called similar (notation 

X = ~[• XUV XUV~O UV X HV 

1.2. Two blocks X., and X.. 
lj~ts lj~pq 

if for every row (column) ~ c Xij~t s 

and the same holdswith the roles of 

2. Lemma. Let ~i ~ X1j~pq and ~2 

Xij. If ~i ~ ~2 then O I and O 2 

are called similar (notation X. ~ X ~pq), 
lj~ts lj 

there exists a similar row (column) T ~ X.. 
lJ,pq 

X . and X.. interchanged. 
lJ~st ll~pq 

c Xij~t s be two rows (columns) of blocks of 

have no variables in common. 
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= u~v ~ = u~v e Since The Proof will be given only for rows. Let ~I x ~I xuv' ~2 x ~2 xuv" 

a I ~ 02 there exists a variable x r such that ~i = alXr + ''" ' E2 = a2Xr + "'" 

and a I ~ a 2. Consider the matrix e r • Cj. This matrix has a I for each entry of 

row $i and a 2 for each entry of row ~2" By the definition of a stationary graph, 

this implies that ~i and c2 have no variables in common. 

3. Proposition 

3.1. If X.. 
lj~pq 

3.2. If X.. 
~J~Pq 

Xij ~ ts 

l]~ts 

then these blocks have disjoint composition. 

then these blocks have equal composition~ that is 

UV UV 
x CX,.  x c X . .  
uv lJ~pq uv lJ~st 

The Proof is exactly the same as for cells (see Hb, 6). 

4. Definition. The factor sraph Y = (Yij) of a graph X = (Xij)i,j& I by a system 

[ £ . }  of  n o r m a l  s u b c e l l s  £ .  ~ X i s  d e f i n e d  in  t h e  f o l l o w i n g  manner :  
1 1 i 

i i e I, t 6 [l,mi] ; a) The vertices of Y are the sets Vt, 

b) If Ypq~ Yst ¢ Yij' then Ypq = Yst if and only if 

Xij~p q ~ Xij,s t. 

5. Theorem. The factor-graph of a stationary graph X = (Xij) by a system {~i} 

n o r m a l  s u b c e l l s  ~ .  '~1 X. .  i s  a s t a t i o n a r y  g r a p h  of  t h e  same r a n k  a s  X. 
t l l  

of 

The Proof is the same as that of H7. 

6. Notations. Keeping notations of 4~ we write 

Yij = ~i \ Xij/ '~j " 

If i = j~ we abbreviate 

Y . . =  ×. . IL .  . 

ii l] l 

If ~i = i (i.e.~ IV$1 : i for all t) we write Yij= Xij/~]j~ Yji = ~i\ Xij. 
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J. ON THE STRUCTURE OF CORRECT STATIONARY GRAPHS 

AND CELLS HAVING MORE THAN ONE NORMAL SUBCELL. 

We begin this Section by stating simple properties of factorization and some 

conditions for existence of normal subcells. 

We then pass to the study of cells with two or more normal subcells. The 

results here are analogous to results of Kuhn [Ku i] about imprimitive permutation 

groups. We give these results to show how some of the notions introduced in the 

preceding Sections can be used to restrict the structure of stationary graphs. The 

annex~ described below in 4.3, can be used in algorithms of graph canonization 

(although it is not used in Section R). 

The Section is concluded by the study of correct cellular algebras. These 

algebras form an obvious obstruction to usual algorithms of graph canonization 

(cf. R 9.2). We describe in 6.7 a construction which permits dealing easily with 

these graphs. Other parts of Subsection 6 are dedicated to the proof that the 

approach based on 6.7 can be used and can be used with advantage (its use is 

described in R 5.4.2~ R 6.2). A non-trivial example of a correct cell is given in 

G 4.7. 

i. Elementary properties of factorization 

Let X be a stationary graph and X .... (Xij) be its decomposition. 

i.I. Proposition. Let ~i ~ Xii' ~j < Xjj Then 

~i ~Xij/~ j = li~(Xij/~ j) = (~i~Xij)/~j • 

Proof. Evident. 

1.2. Proposition - Definition. Let ~ Xii , ~ Xii/~. Then there exists 

~' ~ X. such that ~ and the imprimitivity sets for ~' ii e~ e~),, are inverse 

images in V(Xii ) of the imprimitivity sets for~ in X../~. ~' is called the 
Ii 

inverse image of ~ ~ X../~ in X... 
Ii ii 
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Proof. Evident. 

1.3. Proposition. Let ~ Xii , ~ ~ Xii and e~ ~ e~o 

Then 

a) Xii/. ~ contains a normal subcell ~ whose inverse image in X,:ll is ~; 

h) x../~G~= (x../~)/,,~. Jl jl 

Proof. Evident. 

1.4. Cqrqllary. A normal subcell ~ of X . is maximal (i.e., there does not 
ii 

exist ~ <~ X=~i with % --c e~) if and only if the cell X../~211 is primitive. 

The Proof follows immediately from 1.2. 

2. A condition for the exist enc# of normal subcells. 

Proposition (compare HI3). Let X = (Xij) be a stationary graph~ 

el, ..., er ~ Xij , e = E ri=l ei' d(~) < IXjjl. Ass~m~e that the non-zero rows of e with 

the indices ml,m2,...~m t are equal~ and that all other rows are not equal to these t 

rows. Then {ml,...,mt} is a set of imprimitivity for some normal subcell ~of Xii. 

Proof. Put W = {ml, ...~ mt] , and consider ee' = (apq). Then 

a = d(~) if p,q C W ; 
Pq 

a < d(e) if p c W, q ~ W 
Pq 

or q eW~ p ~W 

Put ee' = ~ aiei, I = {i : al = d(~)}. By the above discussion I ~ ~, and the 

graph f =(Erc I er) IX.. is disconnected. Moreover, f N X(W~V(Xii)) ~ (It,0). 
ii 

Thus our assertion follows. 

Geometrically, our proof shows that if each vertex from a set of vertices W 

in V(Xii) is connected by ~ in the same way to some set of vertices in V(Xjj)~ 

then this set W is distinguished. The fact that it defines an imprimitivity 

system follows from the properties of cells. 
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3. A condition for the existence of a homomorphism. 

Proposition. Let X : (Xij) be a stationary graph~ Xij : Zic I xie i. 

d(em,) = i for some m C I~ then X is a homomorphic image of X... 
ii ll 

Proof. Put d(e m) = t, IXii I = n, 

If 

i 
[ V1 V 2 V 3 V 4 

X Xii 

X . .  
JJ  

xij I 

Since d(em, ) = I~ d(em) = t~ it follows that t columns of the matrix emlx. ' are 
1j 

pairwise equal~and that they are r~t equal to Shy other column of e . Let ~.~ be the 
m 

norma l  s u b c e l l  o f  X . .  d e f i n e d  ( c f .  P rop .  3) by e q u a l i t y  o f  t h e  rows o f  e m. P a s s i n g  
JJ 

to the quotient of X by the system ~i <~ Xpp, p ~ j, ~ X..}jj of normal sub- 

c e l l s ~ w e  s e e  t h a t  X i j / ~  c o n t a i n s  a b a s i c  e l e m e n t  fm ( t h e  image a f  em) wh ich  

has the property d(f m) = d(fm,) = i. Then by E 5.2~ f defines a weak isomorphism 
m 

of X.. and X../~ as desired. 
ii jj 

Geometrically~ e serves to paint groups of vertices and edges of X.. in the 
m lJ 

color  o f  t he  v e r t i c e s  of  V ( X i i ) .  I f  e q u a l l y  p a i n t e d  v e r t i c e s  a r e  i d e n t i f i e d ~  we 

g e t  t h e  g r a p h  X . . .  
11 

4. Connection blocks of normal subcells. 

4.1. Definition. Let X be a cell, and let~and ~ be two normal subcells of X. 

Let XI~ X2~ X3~ X 4 be four graphs which are equivalent to X and have pairwise 

disjoint composition. Then 

Y = XI X2 1 

X 3 X 4 

= (Yij) i,jE [1,2] 
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is a stationary graph of rank 2. One takes ~ ~ YII ~ £ ~ Y22' Set 

COnx~,£) = ~Y12/£ , 

and call this matrix the connection block of ~ with o~ . 

4.2. Proposition. Let X be a cell, ~ ~ X, £ <] X. Let 

be a stationary graph of rank 3 with 

Z = ( Z i j ) i , j = l , 2 , 3  

Zl l  : X/~, Z22 : X / g ,  Z33 = X, Z13 : C o n z ( ~ , l ) ,  Z23 : C o n x ( £ , l  ) .  

Then 

Zt2 = C o n x ( ~ Z ) .  

Zll 

Z22 

e 
Ill 

Z13 

Z23 

Z33 



64 

Proof. By definition of ZI3 there exists a basic element em c ZI3 such that 

d(em) = I, and em defines (cf. Prop. 3) a homomorphism of Z33 into ZII (e m is 

the image of the identity matrix, cf. Definition 4.1). It can be assumed that 

em = Er O it~• where r = IZIII~ t = d(em). Let [VI, V 2, ...~ Vr } be the imprimi- 

tivity system of ~. We can consider the similarity of those parts of the rows 

of the matrix Z23 which lie over sets V i (see the definition of factorization, I4). 

Set (aij) = em " Z32 ~ ZI2. It is clear that aij , i ¢ V(ZII) ~ j c V(Z22) depends 

only on the similarity class of the part of the row X(j~Vi) ~ Z3~ 2. This means 

that Conx(~) ~ ZI2. 

Now consider the first column O = X(V(Z22)~I ) of the matrix Z21. One has 

O • em c Z23. Moreover~ the first column of the matrix ~ . em is equal to ~. 

Thus if the i-th and j-th elements of column ~ are equal, then parts of 

rows X(J~VI) and X(i~VI) are similar, which yields the converse inclusion, i.e., 

COnX(~,Z) e ZI2. 

4.3. Annex. 

Since the passage to the quotient simplifies a picture, but also leads to the 

loss of a useful information~ we propose the following construction. 

be a stationary graph, ~ be a normal subcell of Let X = (Xij)i,je[l~m] 

X 
tt ° 

Definition. The following stationary graph ~ = (Xij)i,j~[O~m] of rank (m + I) is 

called the annexed ~raph of X with respect to ~: 

~.. = X.. if i,j e [l,m] 
lJ ~j 

~00 = Xtt/~' Xot = C°nx ~,I) 
tt 

~Oj = ~\Xtj for j ~ t. 

The block X00 is called the annex. 
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5. Imprimitive cells with several normal subcells 

5.1. Let X be a cell~ [Vi}ic[l,t ] and [~i}ic[l,~] be two systems of imprimiti 

vity for X, and ~ and ~ be the corresponding normal subcells of X. 

Proposition. If V. n ~. ~ ~, then X contains a normml subcell 
l j 

a = IVi N ~jl and ~' ~ ~ ~' ~ ~. 

~' of degree 

Proof. Let {et~ t ~ J} be the set of all those basic graphs et~ whose edges 

connect points of the set V. n ~.. By the definition of normal subcells~ and by 
l j 

Lemma H2~ it is clear that e t c ~, e t e ~ for all t ~ J. Hence, any path 

along the edges of e t must remain in both sets V i and V"~j (if it begins inside 

it). Consequently~ ~tCJ et defines a normal subcell ~' and the set V. N ~. l j 

is contained in some imprimitivity system of ~'. Q.E.D. 

5.2. Corollary. Keeping the notation of 5.1 one has: 

if IV i NVj] = a ~ 0, then al(l~l,l~1). 

b ~ I ~ I 

In particular, if l~)l,I/~l) = i, then IVi n Vjl = i or 0 for all i,j. 

5.3. Let us keep the notation of 5.1. 

Proposition. Suppose that Conx(~,~) = const. Then 

a) There exists a E ~ such that V. N ~. = a for all i~j ; 
l j 

b) Ivi I : a~, IVjI : at, for all i,j, (recall that t : IX/~I, ~ : IX/~I), 

c) There exists a normal subcell ~' <~ X such that I ~'I = a, ~' _~ ~, 

Proof. Let IV I N ~iI =a. Since T = Conx(~,~) = const, and from the defini- 

tion of connection blocks (cf. also 4.2),one concludes that IVl N~iI = a for all 

i. This proves (a). Since V. n v. = ~ and V I N U ~i = VI' one obtains (b) 
i j i 
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from (a). (c) coincides with 5.1. 

5.4. Let ~ ~ and ~6~ be two normal subcells of X± f = ei~ ~ ~ = e~ 

t = Ix/~l, ~= Ix/~l. 

Let us assume that Conx( ~ ,~) ..... const, and Ivi N V~jl = i for all i~j. 

(The latter assumption is not restrictive~since in the general case we can pass to 

the quotient of X by the normal subcell ~' of 5.3.) We can assume that 

V. = [i(~- I) + I, i~] and V. [~ ~. = {i(~ - i) + j~. Then 
l l j 

f : Et~I~ 7 : It@E~t 

Let X = (Xij) (resp. X = (~ij)) be the partition of X into blocks correspond- 

ing to ~ (resp. to ~ ), V(Xii ) = V i (resp. V(~ii ) = ~i). 

Theorem. (compare G3). In the above notations 

a) I~i 121 = IXl 

b) The cell XI~ 

(Xii) ~ i ~ [l~t]; 

c) X.. is embedded into the matrix 
lj 

Xjj, confer C4. I). 

Proof. (a) follows from 5.3b. Set 

is weakly isomorphic to a subcell of all cells 

X. V X.. (superimposition of X.. and 
11 jj 11 

~ diag (XII ~ X22 ~ ...~ Xtt) 

Then from f = ItOE~t 

of (c) follows. 

Let us prove (b). Let 

the following manner: 

a 
pqi 

a 
pqi 

and from ~ • ~ ~ X, ~ • ~ ~ X, the assertion 

el e ~(X). Define the t X t-matrix e i = (apqi) 

= i if and only if e~ A X ~ 0 
i pq 

= 0 if and only if e. N X = 0 . 
pq 

in 
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It is clear that ~ is a basic graph of the cell X/~ (the image of e in 
i i 

X/~). Identify V(X/~) and ~i" Namely, V i ~ V(X/~,~) is identified with 

i(~ - I) + I ¢ ~i ). If e. connects the points p('~ - i) + 1 and q(~ - i) + 1 
1 

of ~i' then el e ~ and ~l connects blocks Vp~ Vq ~ V(X/~). Hence 

7 i = eil~ I. This yields the embedding of X/~ into XII" Since i can be 

r e p l a c e d  by a n y  r e [ 1 ~ ] ~  w i t h o u t  a f f e c t i n g  t h e  p roo f~  our  a s s e r t i o n  i s  

established. 

5.5. Corollary. (compare [Ku i]). Suppose that a cell X contains three normal 

subcells ~I' ~2' ~3 and Conx(~)i, ~ )= const for all i ~ j. Suppose 
J 

further that the cardinalities of the intersections of the imprimitivity sets of 

~i and ~2 ' and of ~2 and ~3 ' is one. Then 

a) I~iI = I~221 = i ~31 ; 

b) The cardinality of the intersections of the imprimitivity sets of ~i and 

~3 is also one. 

Proof follows immediately from 5.3. 

6. Correct cellular algebras 

6.1. Definitions. Let YI~ "''~ Yn be arbitrary (m × r)-matrices. The constant 

(nm X nr)-matrices and the matrices (compare G4.1) of the form 

n 

X(YI, ..., Yn) .... Ei= I hi~Y i + x L~Im, r 

are called fully correct. (Recall that h ~ diag(O~ ..., 0~ i~ 0 ...~ 0).) A 
i 

stationary graph X = (Xij) is called correct if there exist permutations Oij and 

Tij of degrees IXiil and IXjjI~ respectively, such that for i ~ j the matrices 

-i 
Oij Xij Tij and for { = j the matrices Oii Xii oii are fully correct. 

6.2. Proposition. If X is a correct cell~ then X contains a unique maximal 

normal subcell. 

Proof. Let {e 0 = En~ el~ ...~ er} be a standard basis of X. One can assume 
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that e = L @It' where mt = n. Then e ~ ~ e = I - e = E @ I • Since 
r i<r i n r m t 

the graph e is obviously connected~ one concludes that for every normal subcell 
r 

in X~ e~ ~ e. Thus e defines the unique maximal normal subcell. Q.E.D. 

6.2.1. Remark. Geometrically~ a correct cell is a stationary graph~ whose vertices 

are p a r t i t i o n e d ~  V = U Vi~ and any  p a i r  o f  v e r t i c e s  from d i f f e r e n t  V,1 i s  c o n n e c t e d  

by an edge of the same fixed color. 

6.3. Corollary. Any factorcell of a correct cell is correct. 

6.4. Theorem. Let X be a correct stationary graph. There exist permutations 

degrees Ixiil such that ~. X . ~]i is a fully correct matrix,for all i~j. of 
l lj j 

( J  
1 

Proof. Let us bring the diagonal blocks X. into a fully correct form. Now consid- 
Ii 

er n o n - d i a g o n a l  b l o c k s ,  L e t  X i j  = Z t i=l xi e..l We can assume without loss of 

g e n e r a l i t y  t h a t  X . .  ~ c o n s t  ( i n  t h e  c o n t r a r y  c a s e  X . .  i s  f u l l y  c o r r e c t )  and t h a t  
xj xj 

e I = O ( L ~ ) I m ~ r ) T  f o r  some p e r m u t a t i o n s  0 and ~. Then m rows o f  e I a r e  

pairwise equal. These rows define (Proposition 2) a normal subcell ~ of X... xx 

A n a l o g o u s l y ~  r e q u a l  co lumns  o f  X . d e f i n e  a n o r m a l  s u b c e l l  ~ '  o f  X . . .  
lJ JJ 

C o n s i d e r  t h e  f a c t o r - g r a p h  o f  X by  t h i s  s y s t e m  o f  n o r m a l  s u b c e l l s .  We h a v e  

~\Xij/~' = x fl + y f2' d(f2) = d(f~) = I. Therefore (cf. E5.2) Xii/~= Sn' 

X../~' = S . Then 6.2 and 1.4 imply that ~ (resp. ~') is the unique maximal 
jJ n 

normal s u b c e l l  o f  X. ( r e s p ,  li Xjj). 

Let ~) .  be t h e  ( u n i q u e )  m a x i m a l  n o r m a l  s u b c e l l  o f  X. .  ( f o r  e v e r y  i ) ,  
1 11 

~ o f  t h e  g r a p h  X by t h i s  s y s t e m  of  n o r m a l  s u b c e l l s .  Consider the factor-graph 

As was shown above~ 

(*) 
Xij = ~i~Xij/~j = xij fij + Yij g ij' d(gij) = d(g~.)~j = i 

if and only if X.. ~ const, 
ij 

~i~ Xij/~ j = eonst if and only if Xij = const 

Now using Corollary E5.4~ one can bring X into a fully correct form. By (*) 
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and (~'~) the same permutation (mutatis mutandis) also brings X into a fully correct 

form. 

6.5. Corollary. Every correct stationary graph is isomorphic to a fully correct 

graph X = (Xij). Moreover~ X is decomposable into the direct sum of fully correct 

graphs X t having the following property: 

Let ~ .  be the maximal normal subcell of X.~. Then there exists a natural 
I ii 

number n = n(t), such that Xij c X t implies that ~i~Xij/~j is of the form 

xE + n Yln" 

Proof follows by 6.4(*), 6°4(**) from the proof of Theorem 6.4, from E5.4 and from 

1.4. 

6.6 Corollar Y . a) A cell ~icI 

e c X such that e = ~ e 
m ic l-m i 

x. e is correct if and only if there exists 
li 

defines a normal subcell. 

b) Let X = (Xij) be a stationary graph~and let all cells Xii be correct, 

Let ~. be the maximal normal subcells of X... The graph X is correct if and only 
1 ii 

if~for every X.. ~ const~ there exists e ~ X., such that 
lj m lj 

d(e m) = IXjjl - l~jl, d(em,) = IXiil - l~il, 

and such that ~'i and ~j are defined by the equality of the non-zero rows and 

columns respectively of the matrix e m. 

6.7. Let X ~ (Xij)i~je I be a fully correct stationary graph~ which cannot be 

decomposed into a direct sum of graphs (cf. 6.5). Then X . ~ const for all i~j, 
iJ 

and 

Xij = <=I hk~)Ykij + x L~Imimj 

Definition. Put = (Y, . , ) . .  Yk KlJ ~3Cl  

called the d~sassemblage of X. 

and F(X) = {YI' "''~ Yn }° The set F(X) is 
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Lemma. For all k~ the graphs Yk are stationary graphs of the same rank as X. 

Proof. Evident. 

6.8. Theorem. (compare G4.5). Let X~ Yk and F(X) be as in 6.7. Suppose 

further that [l~n] = U Jt ~ and that Yi~ Yj~ i~ j c Jt~ are isomorphic~ but that Yi 

and Yj are not isomorphic when i, j come from different Jt" Then Aut X 

contains (as a subgroup of the group Sym V(X)) the direct product of permuta- 

tion groups G t which 

a) preserve the partition of V(X) into the sets V(Ykii) ; 

b) have the same induced action on Jt as Sym (Jt); 

c) act on U V(Yki i ) 
keJ t 

Sym (Jt). 

as the diagonal of some direct product of groups 

Proof. Let V i = V(Yi) and let [{li' "''~ {ri } be those elements of the standard 

basis of the underlying space of X which lie in V i. By our conditions~ we can 

in addition assume (after an appropriate permutation of bases of Vi) that 

Yi = Yj for i,j ~ Jt" Then define the action of ~ ~ Sym(Jt) on [~mr } by 

~ m~r : { m,O(r) for all r ~ Jt 

O ~ m,r = ~ m,r for all r ~ J 
t 

The (~ defined in this manner commutes with the matrix 

= ~n h k@ Since X - Z = x L @ o Zij k=l Ykij " ij lj Ira. ~m. ~ 
i j 

that is~ ~ ~ Aut X. 

g = (Zij), where 

also commutes with X~ 

Q.E.D. 



K. PROPERTIES OF PRIMITIVE CELLS. 

Sections H-J show the importance of factorization. The question arises: "What 

is the structure of those cells which cannot be factorized?" In particular~ how can 

one describe the result of factorizatic~ ~ The properties of these cells (called primi- 

tive, cf. H i.i) are mostly unknown. The results which we give below are of an 

k 
arithmetical nature, that is~ they give some restrictions on numbers a .. Such 

lj 

results possibly can be used to estimate the performance of an algorithm of graph 

identification. 

The results of this Section are analogous to the results about primitive per- 

mutation groups (cf. [Wi i, 17.5, 17.4, 18.7j, [Hi I, 4.1, 4.2~). 

Let ~ be a cell with unity~ {ei}ie I its standard basis, X = X(O~.), e 0 =~ En- 

Suppose that Ot. is primitive (that is~ does not contain nontrivial normal subcells, 

cf. H i.I). Then all the basic graphs ei, i e I-0, are connected (by H 12). 

I. Propositio n . If ~ is primitive and n i = i for some i ~ 0~ then 

Z[Zp]~ the group algebra of the cyclic group Zp~ p a prime. O~ 

Remark. In this case s any basic graph ei, i ~ O, is an oriented cycle of length p. 

To prove the Proposition we need the following: 

I.i. Lemma. Let ~ be a cell of degree n~ and suppose that 

n O ~= n I = ... = n = i~ m ~ 0~ and n~ > i for i > m. Then e0~ ei~ ...~ e 
m 1 m 

define a normal subcell ~ of ~. They form a group of order m. In 

particular, m divides n. 

Proof of the lemma. As in GI, eo,...,e m are permutation matrices. Since eiej~ 

i, j ~ m, is also a permutation matrix~ we see that eie j = ek(i,j) with 

k(i~j) < m. Therefore, the ei, i < m~ form a group of order m. Put e = ~i<m e . 

--2 
Then e = m e, whence it follows that e0, ..., e m define a normal subcell. 

1.2. Proof of Proposition I. It follows from the assu~ptiOnsof Proposition l, and from 

Lermma i.I, that ~ contains a nontrivial normal subcell. Since Or. is primitive~ 
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2. Proposition. 

p a prime~ and 

Remark. 

this normal subcell coincides with 0~. Therefore, o7J _~ Z[G] for some group G. 

Since normal subcells of ~[G] correspond to subgroups of G (cf. H 8.2)~ it 

follows that G contains no proper subgroups. Therefore~ G ~ Zp~ p a prime. 

Q.E.D. 

If a cell Or, is primitive and n i = 2 for some i, then [OL[= p~ 

all basic graphs ei~ i > O~ are non-oriented cycles of length p. 

It can be expressed in the form O~, _~ Z[O + ~-i]~ ~p : i~ O a permutation. 

Proof. It follows from Lemma 1 and Proposition 1 that n. > 2 for i ~ 0. 
i -- 

Now consider a basic matrix ei~n i : 2. One has eie [ = 2e 0 + ek~ 

d(e k) = 2 (since 2 : min d(ej))~ e k : e~. By P. Hall's Theorem [Zy i]~ 

representable as the sum of two permutation matrices 

e k is 

ek =O+T 

Since e k = e~ one has T = ~-i. Hence e k is the matrix of a non-oriented cycle. 

The cell 0%,(ek) (cf. Section C) has the property that d(fi) = 2 for any basic 

graph f'l of ~g(ek). Since O~(ek) is a subcell of ~ and slnce ql = 2~ 

one has 0(i = OL(ek). If l eul = m • r~ m~ r ~ N~ one of the basic graphs is the 

disjoint union of m cycles of length r. Hence~ if 10~,l is not prime~ Or, is 

imprimitive~ and our assertion is proved. 

3. Lemma. If n i > I~ a~j = nj~ k ~ 0~ then nl > n .j 

Proof. We have n = ~ a k > n = a~ Let us show i s is (by D 4 c 4)~ whence ni -- j lj" 

k 
that n. = n = a contradicts the primitivity of 0~. By a simultaneous 

l j lj 

permutation of rows and columns, we can achieve that the first row of e and e~ 
i K 

take the form 

( 0  . . . .  0 ~1 . . . .  1~  

n i 

(O~l . .~ ,  b o  . . . .  

n k 

0) 
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respectively. Consider now the first row of e e.. 
I j 

the form 

By definition of a cell~ it has 

( * n. ... n. * ... * ) 

n k 

It follows that, if n i = nj~ all n k columns of ej with numbers 2~ ..., (n k + i) 

h a v e  ones  o n l y  i n  l ower  n.  = n .  p o s i t i o n s .  T h e r e f o r e ,  t h e y  a r e  e q u a l .  However~ 
1 j 

if n k > I~ it is impossible in an imprimitive cell (by H 13). The case n k = i 

t o g e t h e r  w i t h  P r o p o s i t i o n  1 c o n t r a d i c t s  our a s s u m p t i o n  ( t h a t  n .  > 1 ) .  T h e r e f o r e ~  
1 

the assumption n = n. is false. Q.E.D. 
l j 

4. Let us order the numbers n..l Let ql' "''~ qs be different values of ni, i ~ 0. 

Suppose that ql < q2 < "'" < qm" Set I k = [i : n i = qk ]. 

Then I-0 = DkI k. We have I k ~ 0 ~ k. 

Lemma. For any two indices i,j there exists an s ~ I such that s # j, aS # 0. 
is 

Proof. Since the graph e i is connected~ all entries of the matrix e p. are non- 
1 

zero (where p is the maximum length of paths in e having no self-intersections, 
1 

p J n). Thus, in the expression 

e p = ~ a t e i t 

all coefficients a are non-zero. 
t 

Let d be the least exponent such that 

d 
e =~b t b ~ 0 i et' j 

Then, 
d-I 

e i = 7~ ct et~ cj = O. We have 

u 
ei(~ c t et) = Zt, u c t ait e u = E b t et, bj ~ 0. 
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Henc% E c a j ~ 0, that is, a j ~ 0 for some s. 
t t it is 

Geometrically~ our assertion has the following meaning. No path of length 

d - I in the graph X consisting of edges of color i can be cut short by an edge 

of color j. However, such paths of length d exist. Consider such a path and 

consider the edge of some color s which cuts short the last d - I edges of this 

path. Then the edge of color s satisfies our requirements. 

/ 

5. Lemma. For any I t and any i ~ It, there exists j @ I t and k c I t 

k 
that a.. ~ 0. 

lj 

such 

Proof. In the same manner as above, consider all possible paths consisting of edges 

of color i. There exists the minimal length d such that some of those paths are 

cut short by an edge of the color lying in I t . Let an edge of color k, k ~ It, 

cut short one of those paths, and let an edge of color j be the edge which cuts 

short the last d - i edges of this path. By the assumption of the minimality of d, 

k 
one has j ~ I t . Since aij ~ O, we are done. 

-i 
6. Proposition. (qs' qm ) -> qm qm-i > 1 for all s. 

Proof. Put t = m~ take i ¢ Is~ and use the preceding assertion. There exist 

indices j and k such that n. < nk qm ~ k J -- qm_l ~ = aij ~ 0. From the inequality 

D 4 c 8 one gets 

qm 
n. > 
J- (n I, qm ) ' 

and this is our assertion. 

k 
7. Proposition. If qm = p ~ p 

k-logpqm_ 1 
a prime, then p divides all qi" 
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8. Proposition. If qm TM p' p a prime, then m = I~ that is, all n. 
l 

pairwise equal .  

are 

Proof of Propositions 7 and 8 is directly obtained by the application of 

Proposition 6. 

(dim X)-2 
9. qk+l ~ qk ql for all k; qm j ql 

Proof. Consider powers of the graph f = Z 
icI I 

e i . We have 

ft = ~i bit ei" 

Put I(t) = ~i~ : ~ s --< t (bis ~ 0)], q(t) = icI(t)max ni~ that is~ q(t) is the great- 

est of the valencies of those graphs whose edges shortcut some paths having length 

d ~ t, and consisting of edges of colors from I I. Evidently, q(t + i) ! q(t)q I. 

Since f is connected~ one has either l(t) = I or I(t + I) ~ I(t) and 

I(t + i) ~ I(t). Hence, qm = q(t0)' to j (dim X) - jI 1 U 01J (dim X) - 2. 



L. ALGEBRAIC PROPERTIES OF CELLULAR ALGEBRAS. 

We have associated with each graph a matrix algebra, OI~X). This gives rise to the 

question whether this algebra structure can be used to get new combinatorial inform- 

ation. In this Section we derive some information of this kind by purely algebraic 

methods. The results of this Secticn are analogous to some results about permutation groups. 

Most of them (and in a more general fo~n) were also o~ained by D. G. Higman [Hi 5], [Hi 61 . 

We assume some basic facts about the structure and representations of semi- 

simple associative algebras (cf.~ e.g.~ [AI I]). Uninterested readers can skip this 

Section since its results are used in very few places. 

If A is a matrix~ we denote by A the conjugate matrix ~' of the matrix A. 

If ~ is a cellular algebra and R is a Z-ring~ we denote the set of all 

R-rational points of the algebra ~L, by 0~R, i.e., ~ is the set of all those 

matrices which can be obtained by substituting elements of the ring R in 

place of variables in X = X(OL). (In algebraic geometry, X would be called 

"the generic point of the matrix algebra 

would be called "the specializations of 

2 
algebra of dimension r . 

£)Z~" and the matrices mentioned above 

X.") Let ~9~ r denote the full matrix 

i. Theorem. Let Or. be a cellular algebra with unity~ and let [~l~...,~n ] be the 

standard basis of the underlying space V. Then 

t 

a) OZ.C~ - ~ r i  (as an algebra); 
i=l 

b) There exist O~.c-invariant and 0~c-irreducible subspaces VI~ V2~ ...~ 

of the space V, and bases ~li~ "''~ ~t i of V (m i = dim Vi) ~ such that 
m i 

V = ~ Vi, and the matrix transforming the basis ~i ] into [~ij] is unitary. 
i=l 

Proof of this theorem is standard and uses the following 

V 
m 

Lemma. Let V be a vector space over C~ d[. be a set of linear operators on V~ 

which contains with every operator A its conjugate A . Let (u~v) = ~ ui ~i be 

the hermitian form on V. If W is an 6~-invariant subspace in V~ then 
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W = {v e V : (v~W) = 0} is also an ~-invariant subspaee. 

Proof of Lemm a. Let 

that is Awc W . 

. * 
w ¢ W , A ~ ~. Then A W __ W and 0 = (w~A W) = (Aw~W)~ 

Q.E.D. 

Proof of Theorem. Let W be an irreducible %-invariant subspace in V. Let us 

put W = V I. If VI~ ...~ V d have already been constructed~ we take for Vd+ I 
d 

any irreducible ~-invariant subspace in ( ~ Vi). By the le~r~a above~ this process 
i=l 

leads to the construction of pairwise orthogonal subspaces V i ~ V and V is 

clearly the direct (even orthogonal) sum of these subspaces. We can now choose a 

basis {~ij}, i ~ [I, dim Vj], in Vj, such that the vectors [~ij} form an orthonormal 

basis of V. Then the matrix transforming the orthonormal basis {~.} into the ortho- 
i 

normal basis [~ij} is a unitary matrix. This proves (b). Assertion (a) follows 

from (b) since any irreducible associative matrix algebra over C is isomorphic to 

some £7v~. . 
r 

t 
2. Corollary. dim 0~. = i_~l r 2 

..... i" 

t 
3. Proposition. Let ~ = @ ~i' ~i -~ ~'Cr i" Let us denote by ~i an 

i=l , 
isomorphism of ~'i on ~'gri ~ and by O the involution A > A of O'g, c. Then 

the algebras ~'~i can be renumbered so that 

i + t  1 

= _ i ¢ It I + I, 2tl] hi ~i t 1 

O 
~i = ~i i e [2t I + i, t] 

Moreover~ o induces 

on ~i@~i+tl~ i e [i, tl] ~ an involution of the second kind; 

on ~i~ i c [2t I + I~ t2] , an involution A > ~il(si(~i(A))'sil) 

symmetric matrix Si; and 

with a 

on hi, i ~ [t 2 + i, t], an involution A > ~I(Ti(~i(A))'T~I ) with a 
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skew matrix T . 
i 

Proof. cf. [Well . 

4. Corollary. Algebras ~i~ ~6i+tl, i e [i, tl] , and ~i~ i e [2t + i~ t] are 

defined over R. 

If i C [2t I + i~ t], r. = 2m + i~ then ~i ~ r  over R. 
I i 

If i ~ [2t I + i~ t]~ r i = 2m~ then over R either 2"~i ~ ~2m 

~i ~ ~m @ ~ where ~ is the quaternion division algebra. 

or 

5. Corollary. If a is the number of symmetric basic elements e i and r = dim ~L~ 

~-~ ~I 2 ~ r i(r i+l) 
then r - a = 2b for some b ~ Z and a + b = ~i r~ + - -  + i=2tl+l 2 
+ 1"=~t 2+1 ri(ri-l)2 

Proof. Let 2b be the number of e with e! ~ e . Then the equality r = a + 2b 

is evident. Let us consider the second equality. Its right side gives (by 

Proposition 3) the dimension of the space of O-symmetric elements in Ot~. It is 

evident that its left side equals the same number. 

6. Let d>g. be a cellular algebra of rank r with unity, and X = X(~YL) = (Xij), i, 

j e [I~ r]~ be its matrix. Let ~ be the cellular algebra with a matrix 

Y = (Yij), i, j c [i~ r]~ such that V(Yii) = V(Xii)~ Yij = const for all 

i~ j ~ [i~ r]. (In particular~ dim ~= r2.) Put N~ = X~.. Let us define the 
I II 

projection ~ : ~ ............ > ~ in the following manner: If e then m Xij' 
d 

~(em) equals (em)Eij , where Eij is the matrix with all ones in the Nj 

block X.. and zeros otherwise. 
lj 

Proposition. a) ~ ~ )TL (over Q). 
-- r 

b) There exists a decomposition d~.~ ~ O ~  defined over Q where the 

injection ~ : ~ > d~L~ and the projection ~ : ~ > ~ are defined as above. 

c) O~Q acts as M r 
£ 

trivially on W . 

on some r-dimensional subspace W in V~ and acts 
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Proof. (a) is evident. Let us prove (b). First~ ~ evidently is a ring- 

homomorphism. The projection ~ is also a ring-homomorphism since (cf. E4g) 

d(e m • e k) = Z a s s mk d(es) = 

0 if e m c Xij, e k c Xpq~ j ~ p 

d(e m) d(e k) if e m c Xij , e k ~ Xjq 

It remains to check that 

evident° 

9 and $ ~ are identities on ~t~ . This is 

Let us prove (c). Let V =~Vi~ dim V i : Ni~ V.l corresponds to Xii ~ cf. El. 

Let {li ~ ..~ {hi i be the standard basis of V.. Put V 0 : C • (~ ~ji)~ 
• i i j 

V.l : [v ~ Vi, v : ~ vj " ~ji' Z v.] = 0}. Put further V 0 : ~V O, V =~..i Then 

0 ~ 0 
it is clear that O~C vO _cvO ~ ~ = (V) , ~.~C~ : 0. Since V : V(~V O, dim V=r~ 

we are done. 

7. Structure of an imprimitive cell 

Let O~- be a cell with unity~ let abe its normal subcell, let e 0 = En,...,e r 
r 

be a standard basis of ~, and ~ : i~__0 e i : E d ~ Ira. Put X = X(OO) and let 

X = (Xij) be a partition of the X corresponding to ~. The cell Or. contains 

the subcell £~ with matrix (cf. H7) XC : (Yij)' V(Yii) = V(Xii)' Yij : const 

for all i~j, Yij : Yst if and only if Xij ~ Xst. Clearly ~ is an ideal in 

OU. 

Proposition. a) The subcell ~.~ is isomorphic as an algebra to the factor-cell 

Crt./~ (the quotient is taken in the class of cells ]out not of associative algebras); 

1 -- 
b) f :--e is an idempotent of OC; 

m 

c) f • Ot • f = ~L, ; 

d) d characteristic numbers of f are equal to i and (m - l)d are equal 

to zero. 

--2 
Proof. (a) coincides with H7. We have further, e = m e, whence (b). If 
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a E f • O"~. f~ then fa = af = a. Hence in every block Xij the rows and columns of 

of the matrix a are constant~ i.e.~ a e ~. It is clear~ that for a e ~ we 

have af = fa ~= a, i.e.~ a e f • ~. f. This proves (c). Property (d) follows 

from equality ~ = Ed~ I . 
m 

8. Lermma. Let Or, be a cellular algebra with unity~ let [e } be its standard 
i 

basis. Let K be the field of q u o t i e n t s  o f  a p r i n c i p a l  i d e a l  domain R, ~ = Z Kei~ 

R = z Re..  Let  M be an  'CK-module. Then M c o n t a i n s   -module M wi h 

KN = M. I n  o t h e r  words ,  any K - r e p r e s e n t a t i o n  o f  t he  a l g e b r a  O~ K i s  K- 

equivalent to some R-representation. 

Proof. Let ~i~ "''~ ~t be a K-basis of M. 

~i ~ "''' ~t be an R-basis of the R-module M 

domain). The elements e i 

from R. 

dim ot~ dim M 

Put M i~l j~=~l R ei~ j . Let 

(remember~ R is a principal ideal 

are written in this basis as matrices with entries 

Q.E.D. 

9. Let ~ be a cell with unity~ let e 0 = En~ el, ..., er_ 1 be its standard basis~ 

t 
n = 101.1, r = dim Ot~ n i = d(ei). Put O~ c = i~__l= )i-i, #Z i _~ 22~ri and let ~i be 

the m u l t i p l i c i t y  of  the  n o n t r i v i a l  i r r e d u c i b l e  (ove r  C) r e p r e s e n t a t i o n  of  ~ .  in  ]_ 

the natural representati°n °f 0~C in V" Let V=d~-tl ~ -  m=l Vd'm' where Vd, m are 

~c-irreducibl% ~j Vd, m = 6j d Vd, m and ~i,C-modules Vd, m and V d~q are iso- 

morphic for m,q ~ [I, ~d ]. 

Theorem (Frame [Fr i]~ [Wi i, 30.5], [Hi 5]). In the above notations~ 

r-i 
r-2 

n n. 
i= 1 i 

t 2 
r~ 

i=l i 

=qe Z 

Moreover~ q = a - a~ where a is an algebraic integer. 

Proof. By Proposition I~ there exists a unitary transformation U such that 
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t -i 
U e i U = M. = O ~ Md~m~i 

I d=l m=l 

where Md~m~ i is (r d X rd)-matrix of a linear transformation of the space Vd~ m 

and all matrices Md,m~i~ m e [I~ ~d] determine equivalent irreducible representa- 

tions of the algebra Ot~. Note that 

(U e i u'l) ' = ~ e' ~-I = (U e'. U -1) , 
l l 

that is 

(*) M' i' d~m~ = Md~m3i' " 

Set 

Nij = Sp(Mi, Mj) . 

We have by (D 4.c 6): 

Nij = Sp(ei, ej) = d(ei)n 6ij . 

On the other hand~ using (*) and the decomposition of the matrix Mi, we have 

Nij = Sp(Mi, Mj) = Sp(MI'. Mj) 

= Sp( ~ ~mM'1 ")(@) ~Md m ") d a~m~t d m ~ ~J 

= E ~ Sp(M~,m, i Md,m,j) 
d m 

Now by the equivalency of representations~ it follows that 
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Sp(M~,m, i Md,m,j) = Sp(M~,p, i Md,p~j) for all m, p e [i~ ~d] 

Hence~ setting Md~ i = Md~l~ i we have 

Nij = E ~d Sp(Md~i Md~j) 
d 

Suppose Md~i = (~, ~d i )' ~' ~ ¢ [i~ ri]. Then 

(**) 

rd 
t 

Nij = ~ ~d ~ --~ " ~ " 

t 

Let us number triads (~, 9, d) where ~, ~ e [I, rd] , d ¢ [i, t], i_~l r'2i = r, 

numbers of the interval [I~ r]. Then 

with 

(% o 
m • ~ e [1, r] 

O 
Let R = diag(~i I Erl2~ ~2 Er2~ .... ), A ~ (ai) , N = (Nij). Then by (**) 

N =A' RA. 

Let a I = det A. Then 

r-i 2 
n r ~ n i = get N = Net R " a I " a I = (If ~i) . al . ~I 

i=l 

Let us show that a I is an algebraic integer. By Lemma 8 in some basis 

~i~ ...~ ~rd of Vd~l~ the transformations el are written as matrices Td~ i 

whose entries are algebraic integers. We have Td~ i = S d Md~ i where S d is an 

appropriate matrix. Let us construct for matrices Td~ i in the same manner~ as 

above~ the matrix ~. Since the linear transformation F----> S F S -I of the space 
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of matrices has determinant one~ 

foregoing remark, det ~ is an algebraic integer. 

integer. 

It remains to show that a I is a multiple of n. 
r-i 

a i for all rows of A. Let us assume that ~ = 1 

dimensional and having multiplicity one) representation of O1~ 

by (D4.c 4)~ a~ = n 61 . Hence it follows that a I = n . a, 

determinant of a (r - I) X (r - l)-minor in A. Thus a = a I 

algebraic integer. The theorem is proved. 

we have det A = det A. On the other hand,by the 

Hence a I is an algebraic 

Consider the sum 

corresponds to the (one- 

described in 6. Then 

where a is the 

-i 
• n is an 

Remark. If 0~ 

basic elements 

this case. 

is commutativ% then the entries of A are characteristic numbers of the 

e . Thus it is possible to obtain information on A and det A in 
l 

i0. Corollaries 

a) If 0~- splits over Q into a direct sum of the full matrix algebras~ then 

2 
q = a , a ~ Z 

then 

then 

b) If OL is commutative, and the characteristic numbers of all e i are rational, 

2 
q = a , a E Z. 

c) If r s = rt, s ~ t, implies ~s ~ ~t' and if (ri, ~i) = i for all i~ 

2 
a c q = a ~ 

Proof. Under the conditions of (a), it follows from 8 that a I = det A ~ Z (in the 

-- 2 

notations of the proof of 9). Hence a I = al, that is, q = a , a e Z. The conditions 

of (b) coincide with the conditions of (a) in the case of a commutative algebra 0"6 . 

Therefore~ (b) follows from (a). Because of the first condition of (c)~ the simple 

surmnands of ~ are defined over Q. It follows that they are matrix algebras 

over simple division algebras. By the second condition of (c)~ those division 
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algebras are fields whence we may use (a) again. 

II. Let Ol~ be a cell with unity. By 6, ~I~ ~ i ~ .  

cannot be simple. 

Corollary. 

impossible. 

Proof. 

m > I, 

We shall show that 

The case #t~ is a cell, Ot~ ~ ~m (over C), m > I is 

In particular, if dim 0~ J 5, then ~ is commutative. 

Let ~ be the multiplicity of the irreducible representation of ~m' 

in the natural representation of 01~. By 9 

m 2 

r - 2 i~l ~-m 2 q =n • n e Z 
i 

jy I and 6, we have m • ~ = n - I. In particular~ (~, n)~ 2 I. Thus 
-m 2 m 2 ( } m2 

n. ~ e Z. However, ~ n i ~: n - i, and therefore ~ n i < 
i=l l i=l - m 

(since the maximum of the product is achieved by equality of multiples). We have in our 

case (n - l)m -2 = ~I m -I m'l) m2 i.e., ~n. < (~ whence it follows that 
i - 

~ni) (~ "m2) _< m -m2 < i if m > i. In particular~ our q is not an integer. 

This contradiction proves our assertion. 

12. Rank 2. 

Let ~ be a cellular algebra of rank 2 with unity 

x = x ( o u )  = 

I Xll X12 1 

X21 X22 

let d~', 01,", 0~2 

form 

fi ll 0 

0 

and OL21 be the matrix algebras whose generic matrices are of the 

I 0 

, 0 X22 

0 XI2 

, 0 0 

10 o) 
, X21 0 
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respectively. Let 

~rl i 

~ " - @  " ~i: . 

1 

dr~ = @~i, ~i -~ ~gr i 

Let ~/i (resp. ~[, ~i ) 

r e p r e s e n t a t i o n s  o f  d ~ .  
1 

( r e s p .  Ol.,' OL") 

For any  g i v e n  d~'-~i ~, 

i " ( i )  = { j  : ¢ c ' :  ~ ~.? .  
.1 t 

c l e a r  t h a t  e v e r y  ~:~~j 

be the multiplicity of the nontrivial irreducible 

(resp. ~' ~") in the natural representation of 
i ~ i 

let us define l'(i) = [j : ~ c ~.] and 
J l 

Since 0~. ~ 01-'(~0~." and ~j, ~']j are simple, it is 

and ~'J are contained in some 6~ i. 
] 

Theorem. 

a) (~'~' " Or" = O, 0"6' " 

Og'12 " ~g12 = ~i" 0f~21 = O, ~12" ~21 -~ ~', ~21" ~12 -~'' 

b) ll'(i)] J i, ll"(i) l ~ i for all i. 

C) If ll'(i) I = 0~ then ~i ~ ~g ''. If ll"(i) l : O, then ~i ~ dr£. '. 

d) If ll'(i) l : i, l'(i) = {j}, then ~. = ~'.. If ll"(i) l = i, 
l j 

l"(i) = [k}, then ~i = ~" 

e) If l'(i) = {j}, l"(i) = {k}, then r i = r'. + r~ and 
J 

contains a maximal  c o m m u t a t i v e  s e m i - s i m p l e  s u b a l g e b r a  of  ~ . .  
1 

£L'. " ~i ) j~k ( 

t Proof. Property (a) is verified directly. Let fi (resp. fi ~ f':)1 be the central 

idempotent of h i (resp. of the algebras ~i' ~"l considered as the subalgebras 

in some ~j) . Then ~i = fi ~ fi' ~'i = f'i O~. fi~' ~f'i" = f''i Or- f':'z By the 

definition of l'(i) and l"(i)~ one has 

fi ~' f' + ~ f" = ~'~ + ~" " = jel (i) j jgl"(i) j I l 
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Since ~i ~- ~r i' one has for ~' ~ 0 : Y' ~i Y' i i i -~ ~t for some t. 

It is clear by (a) that ~' ~i ~" c ~' and ~f ~. ~'. is a direct summand of 
i i i • 

~'. This implies that ~' ~. ~'o = ~£'o for an appropriate j. Therefore~ if 
l l i j 

!l'(i) l = O, then l!'(i) l = I, and (b) is proved. From this (c) and (e) 

f o l l o w .  L e t  us p r o v e  ( d ) .  S i n c e  t h e  m u l t i p l i c i t y  o f  t h e  i r r e d u c i b l e  r e p r e s e n t a t i o n  

o f  '~'. ~ .  "~'. ( i f  d 0) in  t h e  i r r e d u c i b l e  r e p r e s e n t a t i o n  o f  ~(,,. i s  e q u a l  t o  
1 1 1 1 

unity~ we see that the multiplicity of the irreducible representation of ~'. ~° ]~'. 
i i i 

in t h e  ~1- -fold~_ i r r e d u c i b l e  r e p r e s e n t a t i o n  o f  ¢'v~ i i s  ~ i "  Th i s  p r o v e s  ( d ) .  

13. Corollaries. Let X = (Xij) be a stationary graph. 

i 
a) dim Xij ~-(dim Xii + dim Xjj) 

b) If Xii .... Sm3 dim Xij = t + i~ then ~(Xjj) contains~ as a direct summand~ 

the subalgebra ~ ~ ,  where ~ ~ ~I' ~ ~ ~'~gt' and the natural representa- 

" have multiplicities I and (m - i), respectively. In tions of ~ and ~2 

particular~ dim Xjj ~ i + t2~ !Xjj I ~ i + (m - l) t. If t > i~ these inequalities 

are strict. 

c) If Xii =~ Sm, ,IXjjl = m, dim Xij = 2~ then X°.jj = Sm. 

Proof. We can assume that the rank of X is 2~ i = I~ j = 2. In notations of 12~ 

XI2 = P~q~ dim f'p O~ f".q Let us consider some algebra ~..~ One has have dim we 

f hi = f~j ~ f~j + f~ ~w~i f~ + f~j ~i fk + f~ ~i fj' where j = l'(i)~ k = l"(i). 

decomposition rk~ r e , respec- The sunmlands of this have dimensions r~2~ r ''2 r~ r~ 
k ~ j J 

tively. We assume that some r~ or r~ can be equal to zero. Property (a) 
J 

now takes the form 

r'o r~ _< ,2 2)/2 J (rj + r~ , 

which is known to be true. 

To prove (b) and (c), let us first note that in these cases 0%-' = ~ ~i' 

~i = I~ ~2 = m - i~ r I = r~ = I. There exists exactly one direct component of ~-'~ 
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say ~2~ which contains the second sunmmnd of OLT. By (12d), ~2 = m - I. 

Remembering that d~f. 1 is the subalgebra of 07~ defined in 6~ and since 

! wt we have dim fl ~'I fl = I~ 

6~12 = f{ ~I f'l ~ f2 ~L2 f~ " 

Hence dim f~ ~2 f~ = t, i.e.~ 

~ = f~ ~2 f~ ~ $~gt " 

In particular~ dim X22 ~ 1 + t 2. Since ~2 = m - i~ we have ~ = m - I 

(by 12d) and therefore 

IX22[ ~ i + (m - l)t . 

If t > I~ then by Ii all inequalities are strict. 

Let us now prove (c). In notations of (b)~ t = I~ i.e.~ by (b) IX221 ~ m. 

Since Ix221 = m~ one has by foregoing considerations dr6" ~ ~/gl~ ~i, i.e., 

dim X22 = 2~ i.e.~ X22 = S m. 

14. Corollary. Let X = (Xij) be a stationary graph. Suppose that the algebras 

~Yl.(Xii ) and ~6(Xjj) are commutative. Then 

a) dim Xij _< min(dim Xii ~ dim Xjj.) 

b) If dim Xij = dim Xii j then IXii I _< Xjj~ dim X i. --< dim X...jj 

Proof. By the cormnutativity condition of ~' = O'g(Xii) and 07/' = ~(Xjj), we 

' = i and r[ = i° Hence by (12e), r. < 2. If r. = 2, have in notations of 12: r i i -- I 
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then ~2 ~ ~i ~ ~'~ @ ~' where j = l'(i), k = l"(i)° The number of ~i 
J 

for which r. = 2 gives exactly the dimension of g~'12 (since ~2 = f' 01~ f"~ 
i 

where f '  and f"  a r e  u n i t i e s  o f  d'L' ~ " )  T h i s  p r o v e s  ( a ) .  

In case (b)~ we see that each ~.~ is contained in some ~$'i ~ ~2 ° Hence 
J 

by (a) and by (12c) (d~ we have (b). 

15. Let ~ be a cellular algebra of rank 2 with matrix 

/ 

X = ( XII XI2 

\ X21 X22 

t 
Let ~ = ~ ~i' ~i ~ ~r i' and let ~i be the multiplicity of the irreduc- 

i=l 
ible representation of ~. in the natural representation of ~'~. Finally let 

i 
t i 

V = ~ ~ V~ . where V.. are defined as in 9. 
i=l j=l l~j lj 

Theorem (compare [Fr 2]). Let n = IXIII, r = dim XI2 , el, ..., e r ~ XI2. For 

each i c [I~ t] set correspondingly to 12: 

Pi = r'. if l'(i) = j 
J 

Pi = 0 if l'(i) = 

qi = rk if l"(i) = k 

qi = 0 if l"(i) = 

Then 

r 
r 

n n. 
i=l l 

Pi qi 

= q 8  Z 
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Moreover~ q = a • a~ where a is an algebraic integer. 

Proof of this theorem is analogous to the proof of Theorem 9. 

then 

Let XI2 
r 

= ~ x i i=l e i ~  

Sp(e i • ej,) = 6ij • n • d(ei) , i ¢ [i, r] 

Further 3 we may assume that the matrices 

proof of Theorem 9) are of the form 

Md,m, i = U e.1U'I' i e ~i, r] (see the 

I 0 * ) ] Pd 

0 0 } qd 

Since ~ Pd qd = r~ the matrix 

and we have the equality 

A = . . ( a i ~  constructed as in 9~ is a square matrix 

N .... A '  R A . 

Taking the determinants we have 

r t 
P i q i  - -  

mr ~ ni = ( ~ ~i ) a • a 
i=l i=l 

where a = det A. 

It remains to show that a is an algebraic integer. Let us show this. Let 

)~d be a direct summand of dl~; )7.~, ~ be the intersections of ~d with 

07~' and ~" respectively. 

One can assume that )~6~ ~ 0, ~g~ ~ 0 since otherwise Pd qd = 0. Let Vd, i 

be a space of the irreducible representation of ~"d" Then the matrices from ~ 

and ~6~ can be brought into the form 
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I 
0 } Pd 

0 ] qd 

an I0 01Pd 
0 * ] qd 

respectively. When ~ and ~ are of this form, it is evident from (12a) that 

matrices e~ i = i~ 2~..., r~ have the form shown on the preceding page. Let 

Vd, i = V'd,i ~V"d,i be the corresponding decomposition of Vd9 i into the orthogonal 

direct sum. Let us choose a basis of V'd~i such that all matrices es, e sC XII 

are written as matrices whose entries are algebraic integers (Lemma 8). Let the 

~t 
corresponding R-module be Vd, i 

r 
Put ~" = ~' = V" and if [{i ] is an V • t~=~l R e t Then by (12a) K ~'' d~1 d~i" Vd~i d~i 

R-basis of the R-module ~'d,i~'d,i then in this basis matrices ei~ i e [I, r], 

have algebraic integral entries. From this; our Theorem follows. 

16. Corollary. Let ~I~ be a cellular algebra of rank 2 with the matrix 

X = 

I X11 XI2 

X21 X22 

Let N i = IXiil, r i = dim Xil + dim Xi2 , and let [el} , i = i ..... r I + r2~ be 

the standard basis of 6r6 ~ n i = d(ei). Then 

r l+r 2 
rl-2 r2-2 

N I • N 2 
i=l 

t 2 
r. 

i=l i 

n. 
1 

=q c Z 

Moreover~ q = a • a, where a is an algebraic integer. 

Proof. This is the product of the expressions for XII ~ X22 given by Theorem 9 and for 
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XI2 ~ X21 given by Theorem 15. 

Remark. Conversely~ the main part of Theorem 15 follows from this Corollary and 

Theorem 9. The only point which is not evident is that q = a • a in Theorem 15. 

17. Corollary. Let XII = Sn~ dim XI2 = r. Then 

i=l 

Proof. By (13b) Pi ~ 0 for only two values of i, say for i = I, 2. Then one 

can assume that 

~I = i~ ~2 = n - i~ Pl = I~ P2 = i~ ql := I~ q2 = r - 1 

Since (n~ n - i) = i~ our assertion follows from 15. 

18. Remark. Let 

X = 

XII XI2 

X21 X22 / 

If XII = S~ and e i is an element of a standard basis of X~ e i c XI2 ~ then 

evidently e • e! - k E + ~ I~ i.e., e. 
l I i 

design. On the other hand~ any symmetric block-design with matrix e 

considered as an element of a standard basis of some stationary graph rank 2~ 

where, in addition~ XII = X22 - S m, 

This shows that cellular algebras can be considered as generalization of some 

popular combinatorial formations. It is plausible that the theory of block-designs 

could be developed in this direction. In [Hi 3] and [Bo 6]~ this approach is adopted. 

Let us note in this connection that Theorem 10.2.2 from [Ha 3] coincides with 

is the matrix of some block- 

can be 

X of 
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our assertion ~4b). 

19. Example. Let XII = X22 = $7~ e I = E 7 c XII ~ e 2 = ~7 c XII ~ e 3 = E 7 ~ X22 ~ 

e4 = ~7 ~ X22" 

Let e 5 be the incidence matrix of the projective plane of order 7~ 

e 6 = 17 - e5~ e 7 = e~ e 8 = e~. Setting XI2 = x 5 e 5 + x 6 e6, X21 = x 7 e 7 + x 8 e8~ 

we see that 

X = 

I Xll XI2 

X21 X22 

is the matrix of a cellular algebra ~ of rank 2. Evidently, 0£.= )ZI~ ~2~ 

hi ~ 2  ~ where the multiplicity of the irreducible representation of one of 

these summands (say of the first) is equal to unity,and that of the second is six. 

Let us write the elements a of Or. in the form 

/ 
) ( all a12 

\ a21 a22 

! 

~) I bll b12 

\ b21 b22 

where the surmnands denote the projections of a 

in an appropriate basis. (That is, the matrices 

have 

onto ~6 1 and ~2~ respectively~ 

Md,m, i have the above form.) We 

e31: 

0 

0 

0 

@ 

1 

i° I 
0 0 

0 01 
0 i 

16 °I11 :I e2 ------> 

0 0 0 

I°o °If° 1 e 4 ~ 

6 0 - 
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e 5-----> (: 3)0 0 x 

e 6 

0 

@ 

0 

(: 
0 0 

10 o) 0)(o 
@ , %---> 

x 0 0 y i) 
Let ~ be a primitive 7-th root of unity. Then we can assume 

x = ~ + ~2 + ~4 

Since e 5 + e 6 c ~ y = -x. In addition x • x = 2. 

Let us construct the matrix Z = (a~) (el. 9 and 15). 

~ ~ d ~ i 2 3 4 5 6 7 8 
I 

i~ i~ i I 6 

i~ i~ 2 i -i 

2~ 2~ i i 6 

2j 2~ 2 i -I 

i~ 2~ I 3 4 

I~ 2~ 2 x -x 

I 3 4 

2 x -x 

2~ I~ 

2~ I~ 

We have 

det A 2 = -7 (cf. 15). 

According to the proofs of Theorem 15~ we have 

det A • det 

det A I - det AI " det A 2 • det A2 

det A (-7) (-7) (-7x) (-7~) 7 4 7 4 = . . . . . .  x • ~ = • 2~ det A I = -7~ 

78 • 4 
_ _  - 74 

7 2 . 7 2 

• 4 
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Thus (compare 15)~ 

r ~--] 7 2 n n. .3"4 
i 

: 72 • 2 c Z 

Pi qi [-]~. 
1 

20. Example. 

standard basis. 

Let ~ be a three-dimensional cell~ e 0 : En~ el, e 2 

Suppose we have e' = e . We can write 
i i 

be its 

2 E + b e + ci(l n - ei) ei = ai n i i 

This shows that ei~ i = 1,2 are strongly regular graphs (cf. Section T and 

[Se 3]). Strongly regular graphs and, among other things, their spectral 

properties were intensively studied. The most striking result in this direction 

is contained in [Ca 2]. 

A geometric study of strongly regular graphs was strongly influenced by [Bo 2]~ 

[Bo 5]. Strongly regular graphs were also used to construct several sporadic groups 

[Hi 7], [Ti i]. 

Below we shall consider three-dimensional cells from the point of view of this 

Section (cf. also [Hi I]). In Section U~ one can find examples of such cells. 

Let us write 

el = nl f0 + a fl + b f2 

e2 = n2 f0 + a' fl + b' f2 

where f2i : fi ~ fi fj = 0 for i ~ j, are orthogonal idempotents of (~, and 

Sp fo = i. Set 

Z. = Sp f. 
l i 
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Then we have ~I + ~2 = n - I. 

From e 0 + e I + e 2 = I n we conclude that a' = - a - I, b' = - b - i. 

Note that a ~ b since otherwise we would have el = nl fo + a(fl + f2 )~ 

whence e~ = n~ f0 + a2(fl + f0 ) = el En + c2 In~ a contradiction with the assumption 

that dim 05= 3. We have 

Sp e I = 0 = n I + a ~i + b ~2 

From this equality~and from ~i + ~2 = n - I~ we deduce 

n I + b(n - I) n I + a(n - i) 

a - b = - = (*) 
~i ~2 

We have next 

2 2 a 2 b 2 
el : nl fo + fl + f2 

On the other hand 

2 I el + 2 e2 + fl + e I = n I e 0 + all all = nl(f 0 f2 ) 

1 2 
+ all(nl f0 + a fl + b f2 ) + all(n 2 f0 - (a + l)f I - (b + i)f2 ) . 

2 
Combining the two preceding expressions for el, we get the following equation for 

a and b: 

2 I 2 2 
x = n I + .(all - all}X_ - all 

whence 
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x = 

i _ 2 V/(all _ all) + 4(nl all) (all all) _+ i 2 2 _ 2 

(**) 

This gives us (since a ~ b): 

2 
ab = - n I + aq_ IL 

1 2 
a + b = all - all 

J( i 
a - b = _ all - 

2 2 2 
all) + 4(n I - all) 

Substituting this into the expression 

(a - b) 2 = - 
n I + (a + b)nl(n - i) + ab(n - I) 

~i ~2 

obtained by the multiplication of the two right-hand parts of (*)~ we get 

(a - b) 

n n I n 2 
2 

~i ~2 

(***) 

which should be compared with the expression of Theorem 9. 

Let us note that a~ b are algebraic integers. If a~ b c ~ we must have 

I _ 2 2 - 2 
(all all ) + 4(n I all ) = d2~ d e Z 

Otherwise~ let a, b ~ Z. Let 

Q. Since we have e I = el~ 

be the nontrivial automorphism of ~(a) 

we must have 

over 

~I = ~2 ~ b = a 
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n - i 
Therefore~ ~I = ~2 - 2 " Therefore~ 21 (n - i) and from (***)~ we conclude that 

n I n 2 

e Z 

n - i 
But this implies that nl = n2 = 2 ~ whence 

(a - b) 2 = n 

Hence 

a = m +_ ~ ' b = m $ V~n2 

This~together with the expression for Sp el~ gives us 

i 
m = 2 

that is~ 

i V~n b=l- V~n 
a =~-_+ 2 ' 2-+ 2 

Now apply the expression 

2 
ab = - n I + all 

and get 

l - n 
2 

- n I + all = -  
A 
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which gives us 

41n- I~ 

n - I 
2 

a 

II 4 

Summarizing, we have the following 

Assertion. If ~ is a three-dimensional cell of degree n with the standard basis 

e 0 = En~ el~ e 2 

2 
and if e! = e = l i~ then either n = 4q + i~ n I = n 2 = 2q~ all q~ or 

. 2 2 _ 2 
i) (all! all) + 4(n I all) = d2~ d e Z, 

i 2 
(all - all) + d 

ii) The eigenvalues of a I are al = 2 

the multiplicities I nl + ai(n " I) d 1 and i respectively. 

, i = i, 2, and n I with 



M. SOME MODIFICATIONS OF STABILIZATION. 

I. This Section is the first where we are concerned with algorithmic questions. It 

can be considered as a setting of a stage for the treatment of such questions. The 

procedure of stabilization described in Section C is insufficient for a description 

of algorithms (but more convenient for aims of Sections D-L). We describe here a 

modification which makes use of the order of the elements of the adjacency matrix of 

a graph. Some additional modifications are also given. The methods described below 

are used in Sections N, O, R. 

2. Correspondence: ~eometrical graph-matrix whose entries are independen t variables 

2.1. Definition. Let A = (aij) be a (n X n)-matrix whose elements belong to a 

partially ordered set M. The order in M is denoted by ~ ~ ~ ° If~ for a~b ~ M~ 

the order is not defined~ we write a ~ b, b ~ a. If a ~ b~ a ~ b~ b ~ a~ we write 

a > b. We assume that the partial order on M satisfies the following condition: 

If a > b~ b ~ c~ c ~ b~ then a > c. (This is~ in particular~ a justification 

of our notation a ~ b~ b ~ a for a pair with undefined order.) 

Since this condition is preserved throughout all our actions on graphs~ we 

assume henceforth without mentioning that all partially ordered sets satisfy this 

condition. 

Let X(A) = (xij) be a graph (in the sense of CI) defined by 

a) xii = Xkk if and only if aii = akk ; 

b) xii _> Xkk if and only if all ~ akk; 

c) xii > Xkd for all i and all k ~ d; 

d) xij = Xkd ~ i ~ j~ k ~ d~ if and only if aij = akd ; 

e) xij ~ Xkd ~ i ~ j~ k ~ d~ if and only if aij ~ akd ; 

f) The variables entering in X(A) are numbered from 1 to dim X(A)~ and this 

numeration agrees as far as possible with the partial order of the variables, that is, 
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if xij xt~ Xkd = XsJ Xs, = x t > then t > s. 

2.2. If AI~ A2~ ...~ A are matrices with entries f~m M~ we set 
m 

and define 

X(At) = (x~j) 

X(A I N ... N Am) ~= (xij) 

in the following manner 

a) xij = Xkd if and only if xtij = Xkdt for all t; 

b) xij >__ Xkd if and only if 

c) The same as in (2.1f). 

(X~j, m (x I m 
• ,., xij) ~ kd ~ --., Xkd); 

This construction is used for instance in N 3.3 and in 0 4.9~ 4.11. 

2.3. If M is a linearly ordered set, e.g. R, Z~ then the variables of the matrix 

X(A) are linearly ordered. 

If A is the adjacency matrix of a simple geometrical graph~ then M = t0, I~ 

and M is a linearly ordered set (i > 0). Thus, the variables of X(A) are 

linearly ordered in this case. 

Such an approach can turn helpful when one uses cellular algebras not only for 

the study of graphs, but also for the study of orbits of Sym(n) on V~)V*, where 

V is a module over a ring (of. AE 1.2)o 

3. Stabilization 

3.1, Let X be a graph whose variables x, are partially ordered. Let us define a 
i 

partial order of monomials of degree 2 on x. in the following manner. (Recall that 
l 

independent variables do not commut% cf.~ C I.) Set x. x, > x x if and only if 
l j -- s t 

X i --> XS or x i j Xs, xj _> x t. 

Let us extend this partial order lexicographically to all homogeneous polynomials 

of degree 2. Let us further choose two additional variables ~ and ~ and assume 

that X > ~9 and that both % and ~ are strictly greater than all variables x i. 
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3.2. Define the graph X o X = (Yij) as follows (compare C 4): 

a) Yij = Ykd if and only if Er X.lr Xrj + X xij + ~ xji -~ E~ Xkr Xrd 

+ X Xkd + ~ Xdk ; 

b) Yij > Ykd if and only if ~ x x + ~ x + ~ x > ~r - r ir rj lj ji -- Xkr Xrd 

+ ~ Xkd + ~ Xdk ; 

c) the variables of X o X are numbered from i to dim X, and this numera- 

tion agrees with the order of the variables of X = X (in the sense of 2.1f). 

Set X 0 = X~ X i+l = X i° X i. If dim X i-I < dim X i = dim xi+l~ we call X i 

the stabilization of X and write Stab X = X i. 

3.3. Remarks. If the variables of X are linearly ordered, then the variables of 

Stab X are also linearly ordered. The need to use this operation also for partially 

ordered variables arises, for example, in the study of the kernel (cf. next Section). 

3.4. Lemma. One has Stab(O X ~-i) = o(Stab X)O -I for O e Sym V(X). 

Proof. Evident. 

4. Simultaneous stabilization 

4.1. It is possible that the stabilizations Stab X and Stab Y of two graphs X 

and Y contain the same variables which have the same order. For instance~ if the 

variables of X and Y are linearly ordered~ our assumption implies only that 

dim Stab X = dim Stab Y. In this case~ the coincidence of variables of Stab X and 

Stab Y does not imply that those variables have the same origin. In some cases~ 

however~ it is convenient to secure that the "history" (or "genealogy") of equally 

named variables would be the same. The corresponding definitions are given below. 

4.2. Let {AI~ ...~ Am} be an ordered set of (n X n)-matrices whose entries lie in 

ordered set M~ A s = (a~j). We shall denote by dim{Al~ ...~ Am] the a partially 

number of different entries of these matrices. Define the set of graphs 

$ 
X(A l ..... A) = {X 1 ..... Xm] where X s = (xij) by 
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s t if and only if a) xii = Xkk 
s t 

aii = akk ~ s, t ~ [i~ m]~ i, k E [i, n]; 

s a t 
b) xiiS ~ Xkkt if and only if a ~11 -- > kk' s, t C [i~ m], i, k e [i~ n]', 

s t for all s, t e [i, m], all i, k~ d ¢ [i, m], k ~ d; c) xii > Xkd 

s t s t 
d) xij = Xkd ~ i ~ j~ k ¢ d~ if and only if aij = akd , s, t ~ [i~ m]; 

s x t s a t 
e) xij ~ ~d' i ~ j~ k ~ d~ if and only if aij ~ kd' s, t ~ [i, m]; 

f) the variables of X(AI, ..., Am) are numbered from 1 to'dim X(AI, .... Am) , 

and this numeration agrees with the order of the variables (of. 2.1f). 

4.3. Let [XI~ ...~ X } be an ordered set of graphs of the same degree n, whose 
m 

variables are partially ordered. 

Set {XI, ..., X m} = {xi}O and if ~xi]q = [Yi }' Yt = (x~j), then define 

{xi]q+l = {Zi} ~ Z t = (z~j), by 

t t t t ~r X~ s t s if and only if ~ x x + k x . + ~ = x a) zij = Zkd r ir rj lJ xji r r 
s s 

+ X Xkd + ~ Xdk; 

t > z~ if and only if E x t t t t ~r s s b) zij - r ir Xrj + i xij + ~ xji ~ Xkr Xrd 

s s . 

+ k Xkd + ~ Xdk , 

c) the variables of {xi}q+l are numbered from i to dim {xi}q+l , etc. (see 2.1f). 

If dim[xi]q-i < dim[xi]q+l = dim{xi}q , we say that [xi}q 

stabilization of X and write Stab{X.] = IX } q. 
i l l 

is the simultaneous 

4.4. Proposition. Let {X } be a set of graphs of the same degree and 
i 

k 
Stab{X i} = ~Xi}. If X k and X d have the same composition, ~ = Zic I x i ei, 

d 
X d = Zi~  I x i e i~  t h e n  t h e  i d e n t i t y  map o f  I i n t o  i t s e l f  i s  a weak e q u i v a l e n c y  o f  

X k and X d. 

t t ts et. ks ds Proof. Let e.. e. = ~ a . If ~ a for some triple 
i J s lj s aij lJ 

by the definition of the simultaneous stabilization~ X k and X d 

different composition (cf. 4.3a). 

(s, i, j) 

would have 

then 
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4.5. Len~na. Let ~X.] be a set of graphs of the same degree n. 
l 

Stab{O i X i 0~ I} = 10i(Stab Xi)oil} for O l '  0 2 '  ' ' "  6 Sym n. 

Proof. Evident. 

One has 



N. KERNELS AND STABILITY WITH RESPECT TO KERNELS. 

q e W, 

a) 

b) 

The constructions of this Section are motivated by permutation group theory. 

Explicitly. consider a permutation group G acting on the set X. Let Y be one 

of the orbits of G. Let Gy be the pointwise stabilizer of the points of Y in G. 

In this situation~ the construction of this Section aims at the description of ~(Gy,X) 

in terms of 7(G~ X) (cf. Section F). This shows the importance of taking kernels. 

We do not use this operation in the algorithm of Section R. However~ it can be 

used~ at least at heuristical level. 

I. Let X be a stationary graph. It is convenient to assume in this Section that 

the variables of X are linearly ordered. For instance, this order can be chosen arbit- 

rary. Let us, however, not that the algorithm (of. M 2) which constructs for a 

geometrical graph r the corresponding stationary graph Stab x(r), leads just to a 

stationary graph with linearly ordered variables. 

2. Definition of the kernel of X on W 

Let X = (Xij) = (Xmn) = ~ x.1 ei be a stationary graph, and let the x i be 

linearly ordered. Let W = Uic J V(Xii ). 

Let ~ = (~pq) be the graph obtained from X by substituting for all Xqq, 

the new variables Yi where 

~ ~ for all p ~ q c W; 
PP qq 

~'qr > ~tS i f  and only i f  Xqr > Xts ~ t~ s 

Thus the variables of ~ are partially ordered. 

ant) that for the variables 
PP 

Set 

, q~ r C V(X). 

Let us note (and this is import- 

and Xqq, p ~ q ~ V(Xii) CW, the order is not defined. 

~w(X) = Stab 

This matrix is called the kernel of X on W. 
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2.1. Proposition. Aut Kw(X) = [g e Aut X : glW = I~ (whence the name "kernel"). 

Proof. The right-hand side evidently contains the left-hand side. The opposite 

inclusion follows by C 8.2 and by the evident equality: Aut ~ = {g E Aut X : glW = i}. 

2.2. Remark. ~w(X) is equivalent to the stabilization of the intersection (in the 

sense of M 2.2) of the graphs %i(X), i e W, of. next Section. 

2.3. Remark. Geometrically the construction of the kernel with respect to W means 

that we assign to all vertices from W pairwise different colors (and different 

from the colors already used in X). Clearly in this approach we cannot set any invar- 

iant order on the vertices of W. So we are forced to assume that the new colors are 

not ordered• After this repainting, we stabilize the new graph. The next undertaking 

(of. Subsection 3, below) consists in finding whether some of the vertices or edges 

which were indistinguishable in the original graph behave differently in the kernel. 

If they behave differently~ we can invariantly introduce new colors in X itself. 

3. Definition of the s tabilizati.£n, with respect to kernel 

3.1. Let us write Xij > Xkd if the greatest variable of Xij is greater than the 

greatest variable of &d" Let ~W (X) = Y ~ (Ypq)p,q61 = ~ Yi fi" 

Let l.l = [p : Ypp c Xii ] and denote by ~ the partition I = U I i. Let 

~i~ (Yp3q) be the vectors defined in E 6. Set ~ , , pq (~2,~ (Ypp) D2,~ (Yqq) ~l(Ypq ))" 

3.2. Let us define a partial order of the blocks Y 
Pq 

ordering are written down in the order of priority. 

The conditions of the 

a) 

b) 

y c c if X > pq Xij' Yst Xkd~ lj Xkd then Ypq > Yst; 

if V > ~ then Y > Y 
pq st pq st; 

c) if Y > Y then Y > Y for all r, s; 
pp qq pr qs 

d) if Y > Y then Y > Y for all r~ s. 
pp qq rp sq 

If these conditions did not determine an order among Y and pq Yrs' 

write Y ~ Y . 
pq rs 

we shall 



'106 

3.3. Let us define a partial order of f.'s. 
I 

order of priority. 

The conditions are written in the 

a) fi C er~ fj c et, if Xr > xt then fi > fj; 

b) fi c ypq~ fj c Yst if Y > Y then f. > f • 
pq st i j' 

c) let X. = Stab X(f N X) (cf. L 2.2) if X > X. then f. > f . 
l l l j • J 

If these conditions do not determine an order among 

f. ~ f.. 
i -- 3 

f'l and fj~ we shall write 

Remark. Clearly (c) is stronger than (a). (a) is included here to make references 

more convenient. 

3.4. Let ~. ~: E f . Let K be a set of indices such that ~ ~ ~. for any 
i fi ~ fj j i 3 

i ~ j~ K~ and such that for every fo there exists j 6 K such that f. = f.. It is 

evident that ~. A ~, ~ 0 implies ~ .... ~ . Hence ~i N ~j = 0 for all i ~ j ¢ K. 
1 j z j 

Set ~ = Zie K ~ ~. and ~. > ~ if f > fj, i, j e K. Put 
i i i j i 

0w(X ) = Stab 

We shall call this matrix the stabilization of X with respect to the kernel on W. 

By the remarks in the beginning of this seetion~ Pw(X) is the matrix with 

linearly ordered variables. 

3.5. Proposition. The graph 0w(X) is defined invariantly~ i.e.~ if 

then 0gw(g X g-l) = g(0w(X))g-l. 

Proof. Evident. 

3.6. ProDosition. Aut X = Aut Pw(X). 

Proof. Evident. 

4. Definition and properties of stable graphs 

4.1. We say that X is stable with respect to the kernel on W if 

g ~ sra v(x) 
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~X dim X = dim Pw(X) (that is, if X and Pw(X) are equivalent). If ! ii I = m = rt 

and if for all YppCXii one has IYppl = r, then we say that ~W decomposes X.. 
ii 

into t (equal) parts of degrees r. If t = m, we say that ~W, splits Xii ~ and 

if t = i~ we say that ~W does not decompose X ..ll 

4.2. Proposition. Let a stationary graph X be stable with respect to the kernel 

on W, Y = ~w(X) = (Ypq) = E Ym f; X = (Xij) = ~ x t e t. 

then Y ~ Y . I n  particulaN~ IYppl = IYqql, a) If Ypp~ Yqq Xii ~ PP _ qq 

dim Y = dim pp Yqq~ ~2,~(Ypp ) = ~2,~(Yqq); 

b) {V(Ypp)}y cX.. is an imprimitivity system for 
pp zl 

fs~ ~ e then f ~ f and e = c) If ft r s -- t r s" 

X. ; 
ii 

In particular d(fs) = d(ft) ~ and natural weak equivalency of 0~(f s n X) and 

0D(f t n X) is well-defined. 

Proof. (a) and (c) follow directly from the condition of the stability of X and 

from 3.2~ 3.3. 

c f c y . By 3.2a~b, if f ~ f then Let us prove (b). Let Ypp Xii~ l pp j -- l 

fj c yqqj yqq ~y_ PP" Hence~ 7.~ c diag (Ypp)yppC:Xii. In particular~ ~.l is dis- 

connected. The set of vertices of the connected components of ~fi~Ypp ~i 

coincid~with sets V(Ypp)~ whence (b). 

4.3. Corollary. Let X be as in 4.2. If the cell Xii is primitive, 

then either ~W splits X or ~W does not decompose X. . 
li ii 

Proof. Since in a primitive cell all normal subcells are trivial ones~ 

from 4.2b that ~ .IYppl =i or, . , ~!YppI=IXiil for any Ypp c X,..iz 

it follows 

Q.E.D. 

4.4. Lermna. Let X be as in 4.2~ X = (Xij)i~je I. Let I = I 1U 12 

splits Xii ~ i ~ Ii~ and ~W does not decompose Xii ~ i ~ 12 . Then 

where ~W 

X = XI~X 2 where X t = (Xij)i,jclt 
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Proof. We must show that Xij = const~ i e Ii~ j e 12. We may 

assume that W = Uic!l V(Xii), W = [I~ r]. Set Y = (Ypq). Clearly~ Ypq is a 

row of length IYqq! for any p ~ [i, r]. Let q > r, V(Xii ) = V(Yqq). If 

p e V(Xjj), j e II, then it follows by the previous remarks that Xji contains a 

constant row~ namely Ypq. This means that Xji = const. Q.E.D. 

4.5. Corollary. Let X be as in 4.2~ X = (Xij)i,jE I. Suppose that cells 

i e Ii~ are primitive and set J = I - Ii~ W = Uie J V(Xii). Then either ~W 

splits X or X = XI~X 2 for appropriate X I and X 2. 

Xii~ 

Proof is obtained by successive application of 4.3 and 4.4. 

5. Variants 

5.1. Many of the constructions given in this Section can be strengthened. Such 

constructions were not introduced above because we know of no assertion which uses 

their full power. Actually, Proposition 4.2 (which also does not use all given 

constructions) is completely sufficient for our purposes. 

5.2. ~w(X). It is possible to consider instead of Kw(X ) the matrix K~w(X ) 

which is defined in the following manner: 

Let ~ = [ie V(Kw(X) ) : ~ p, V(Ypp) = i}. In the matrix X, replace the 

submatrix (xij)i3jeV(X).~ by the corresponding sub- 

matrix of ~w(X). Call the obtained nmtrix ~, and put ~(X) = Stab X. The 

constructions of Subsection 3 are easily carried over to this case. In 

general, ~w(X) gives more information than Kw(X ) since the restriction of ~(X) 

on W may be non-split. 

5.3. Strengthening of 3.2 and 3~3. The methods can be strengthened by repetition up 

to stabilization. It is possible~ moreover, to consider stronger invariants (cf°~ 

e.g., E 6.3) in place of ~2,~(Ypq) and ~l(Ypq). 

5.4. Strengthening of Ow(X). Instead of stabilization with respect to ~w(X)~ it 

is possible to stabilize with respect to all matrices which arise from X (cf. 2) in 
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the process of its stabilization cf. M 2). This method may lead to stronger 

conditions. 

6. Examples 

6.1. I do not have examples where Pw(X) ~ X. 

6.2. Consider the graph 

X = 

x y z u u v v W W  

z x y v v W W U U  

\ 

y z x w w u u v v  

a b c p q r s m n  

a b c q p s r n m  

b c a m n p q r s  

b c a n m q p s r  

c a b r s m n p q  

c a b s r n m q p  

Take W = ~i, 2~ 3]. Then 

~w(X) : 

x I 

x 4 

x 7 

z 4 

z 7 

z 7 

\ 

x2 x3 Yl Yl Y4 Y4 Y7 Y7 

x5 x6 Y2 Y2 Y5 Y5 Y8 Y8 

x8 x9 Y3 Y3 Y6 Y6 Y9 Y9 

z 2 z 3 a I b I u I v I u 2 v 2 

z 2 z 3 b I a I v I u I v 2 u 2 

z 5 z 6 u 3 v 3 a 2 b 2 u 4 v 4 

z 5 z 6 v 3 u 3 b 2 a 2 v 4 u 4 

z 8 z 9 u 5 v 5 u 6 v 6 a 3 b 3 

z 8 z 9 v 5 u 5 v 6 u 6 b 3 a 3 

There is no order relation inside the following groups of the variables (Xl, x5, x9), 

(x2' x6' x7)' (x3~ x4' x8) (Yl ~ Y6 ~ Y8 ) (Y2' Y4' Y9 )' (Y3' Y5' Y7 )~ (Vl~ v4' v5)' 

(v 2, v3~ v6), (u I, u4~ u5) 3 (u2~ u 3, u6), (a I, a 2, a3), (b I, b2~ b3), (z I, z5~ z9), 

(z 2, z 6, z7), (z 3, z 4, z8). 
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We have 

~w(X) = x 

6.3. In this example we use the constructions of G 4 and J 4.3. Let YI~ ...~ Yn be 

naturally weakly isomorphic cells of degree m, and let Z be a cell of degree n. 

Set 

Xll = (YI' ..., Yn)wr Z 

Then by G 4.4, XII has a normal subcell ~ such that XII/~ ~ Z. 

we can construct 

Using J 4.3 

X = 

XO0 XOI 

XIO XII 

where XO0 ~ Z and XOI ~ x E n ~Im, l + y ~nO im, I. Set W = V(Xo0). 

Then ~w(X) = ~w(Xo0) ~ On=l ~i' where the Y'l s have disjoint composition but 

"Y'I ~ Y'l" Of c o u r s e ,  Zw(Xo0 ) i s  s p l i t .  We have 

~w(X) = x 



O. DEEP STABILIZATION. 

i. Examples (cf.~ e.g., Section U) show that Stab X is a good, but insufficient in- 

variant of X. To make this invariant more powerful we apply deep stabilization. 

There are several ways to introduce deep stabilization. We discuss here in more-or- 

less detail one approach (others are briefly discussed at the end of this Section, 

cf. also Section AD). 

The construction described below is modeled on permutation groups. Let G be 

a group of permutations of a set V~ and x a point of V. How can one describe 

7.(Gx~ V) in terms of ~(G~ V)? Our graphs ~x(X) are analogues of X(7(Gx, V)) 

in the case X = X!~ (G, V)). 

The construction of this Section is used in the description of the algorithm of 

Section R. This latter algorithm uses stabilization not only with respect to 

[~m(X)}, but also with respect to more refined daughter systems (e.g., with respect 

to ~ (X)} stabilized up to depth k). This forces us to consider general 
m 

daughter systems (cf. 3.1 below). 

2. I nvariant algorithms 

2.1. Let 5~ be the set of graphs and 

(computable) function from ~ into 9~'. 

An algorithm 

of vertices of X e 

be an algorithm on graphs, i.e., a 

is called invariant if for e~ery substitution o of the set 

one has 

~(~ x G -1) = o(~(x))o -1 

~z~ is called correct on X if O X O "I = T X T "I implies 

J< (O X O -I) = ~(~ X r-l). 

Lemma. An algorithm ~ is correct on 

respect to all O ~ Aut X~ i.e.~ if 

X if and only if it is invariant with 

~Z~(O X O "I) = -~/(X) for ~ s Aut X. 
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Proof. Evident. 

2.2. The algorithm X---> Stab X is invariant~ cf. C 8.2~ M 3.4. 

2.3. It is possible also to define invariant algorithms from ~ into 

X~ × ... × ~. Below, such an algorithm is considered~ and it is shown how 

to use it to construct an invariant algorithm from ~ into ~ which is stronger 

than Stab. 

3. Daughter systems. Systems [k (X)] 
l 

3.1. Let X = (Xij) be a stationary graph, W ~ V(Xtt). A system of stationary 

graphs [Xi]i¢ W is called a daughter system of X with respect to W. We write 

{X i} = Dw(X). 

Let ~ be an algorithm which constructs for the pair consisting of the station- 

ary graph X = (Xij) and the set W = V(Xtt) , a daughter system Dw(X) = {Xi}ie W o 

-i 
is called invariant if ~(~ X G "l) = {O X -l(i ) }~(i)g~(W) for all 

o ¢ sym v(x). 

The corresponding daughter system Dw(X) is then said to be defined 

invar iant iy. 

3.2. The principal example of a daughter system which is used below is the system 

[Xm(X) ]meW" 

Let X = (xij) and take m ¢ W. Let Xm = (Xmij)-- be the graph defined in 

the following manner. Let y be a new variable~ y > x.. for all i~j. Set lj 

Lij = xij if i ~ m or j ~ m, ~ n~n = y. 

Now set (cf. M 4.2, 4.3) [~m(X)} = Stab[L]mc W (simultaneous stabilization). 

We say that ~ (X) is obtained from X by deleting the m-th row (column). 
m 

If .~ is an invariant algorithm on graphs, then {~(Xm(X))}mcW also is an 

example of an invariantly defined daughter system. 

3.2.1 Let us note that if the variables of X are linearly ordered~ then the vari- 

ables of all graphs hi(X ) are ifnearly ordered. 

3.2.2. Geometrically~ hi(X ) is the graph obtained from X in the following way. 
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Choose a new color (which is not used in X)~ paint the i-th vertex of X in this 

eolor~ and then stabilize. 

3.3. Lemma. Aut X (X) = (Aut X) ( = the stationary group in Aut X of the point 
m m 

m). 

Proof. The inclusion (Aut X) m ~ Aut ~m(X) follows from the definition of ~(X). 

The reverse inclusion follows by C I0 from the obvious equality 

(Aut X) = Aut 
m m 

where ~ is as in 3.2. 
m 

3.4 Theorem. a) Let ~ c Sym V(X) be an isomorphism of kt(X) on ~s(X)" Then 

~ Aut X and ~ t = s. 

b) If ~ ~ Aut X~ t, s E W, T t = s~ then ~ is an isomorphism of X (X) 
t 

(x). 
s 

on 

-i 
Proof. (b) is evident. Let us prove (a). We must show that • X • = X. Let 

X = (xij), Xt(X) = (Yij), ~s(X) = (zij). Note that by the properties of the 

simultaneous stabilization~ the equality Yij = Zkl implies equality xij= Xkl. 

Since ~-I Xt(X ) T = Xs(X)~ we have z~i,~j = Yij for all i,j. By the above 

remark~ it follows that xTi,~ j = xij . Q.E.D. 

3.5. Theorem. Suppose that a partition W = U W is such that p~ q c W. if and 
i i 

only if ~p(X) and Xq(X) have equal composition. If Xp(X) = R for all p c Wm~ 

then W is an orbit of the group Aut X and Aut X acts on W faithfully and 
m m 

fixed-point-free. 

Proof. By 3.4b~ Aut X preserves W . By 3.4a and E 5.6~ Aut X is transitive on 
m 

W . The l a s t  a s s e r t i o n  f o l l o w s  from 3 . 3  by t h e  c o n d i t i o n  k (X) = R f o r  a l l  
m p 

peW . 
m 

3.6. Remark. In the case when X =7(G~ V)~ G a permutation group of V~ I do 
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(although one has 3.3). 

4. Stabilization with respect to the system {Xm(X)]mEW 

4.1. Define ~ = (~ij) in the following manner: 

a) ~ij = xij for i ~ j; 

b) ~.. = x for i ~ W; 
11 ii 

c) ~ii > Xkd for all (k, d) ~ (j, j)~ j ~ W; 

d) ~.. = ~.. for i~ j E W if and only if ki(X) and %.(X) have equal 
ii Jj j 

composition; 

e) ~. > ~ for i~ j e W if and only if Xi(X) > X (X) 
li jj j 

sense of composition of matrices); 

f) Cf. M 2. If. 

Set 

OI,w(X) = Stab 

(comparison in the 

Remark. Even if dim OI~w(X) = dim X~ it is possible that (~I~w(X) ~ X. However~ 

OI~w(X) ~ X in this case. 

4.2. Lemma. a) The algorithm X > OI~w(X) is invariant~ i.e.~ 

(~I,W(~ X T -1) = ~(OI,w(X))~-I for ~ ¢ Sym V(X); 

b) Aut X = Aut OI~w(X ). 

Proof. (a) is evident; (b) follows from (a). 

4.3. eemma. If X ~ OI,w(X ) and ki(X ) = j~l i y.j f!i)j then Ii = lj for all 

i~ j C W and the identity map I. ) I. is a natural weak equivalency. 
i j 

Proof. The first assertion follows directly from 4.1d, e. The second one follows from 

the first and from the fact that the hi(X ) are obtained by simultaneous stabiliza- 
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tion (cf. M 4.4). 

4.4. Suppose that the entries of the graph X belong to a linearly ordered set of 
n 

~(k) Put v a r i a b l e s .  Assume ~I~w(X) ~ X. Let  kk(X) = i~--1Yi t i  " 

f(k) 
~i = k~W i 

m. 1 

Let ~'~ = j=~l aij gij ~ where aij c Z~ aij > O~ aij > aij+l and where gij are 

d i s j o i n t  (0,  l ) - m a t r i c e s .  (That is~ g i j  has ones a t  those  p o s i t i o n s  where ~ i  

has aij and gij has zeroes otherwise.) Set (cf. M 2.2) 

02~w(X) = Stab X(gll N ... n glm I N ... N gnl N ... N gnmn) 

4.5. Lemma. 

a) The algorithm X > O2~w(X ) 

b) Aut X = Aut ~2~w(X). 

Proof. See 4.2. 

Suppose that the entries of X are linearly ordered and X--~OI,w(X). 

is invariant; 

4.6. Remark. The stability with respect to ~I~W ~ ~2~W is usually sufficient 

to prove theorems. Actually we use only Theorem 4.7 below. We give~ however, in 

4.9~ 4.10~ some additional operations. Geometrically~ all these operations of 

stabilization can be described as follows. Each set V(Xii) and each graph e. ] 

fall into pieces in each ~m(X). If there is a difference in the coloration of these 

pieces for different m~ then it gives rise to a difference of the corresponding 

vertices. They should~ therefore~ be repainted in different colors (this is OI~W ). 

If different pieces of e. behave differently with respect to the family ~k (X)}~ 
j m 

we can repaint edges of e.3 (this is O2~W ). And so forth. 

4.7. Theorem. Let X = (Xij) be a stationary graph with linearly ordered entries~ 
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W = V(Xtt) , X ~ ~I~4(X) ~ ~2,w(X) 

Let 

lwl 

e . 
r 

n N 
f(m) = (<j) Then X = ~%1 xi ei' km(X) = ym = i%1 Yi i 

a) If f!m)1 N er ~ O, then ~ f(m)i = a.l er where a.l is the product of 

by the number of ones in  f!m) (for  any m) d iv ided  by the number of ones in  
1 

b) Let e i c X d = and let ~m Pt ~ d(ei) , rl~m~ ..., r d be the numbers of those 

positions of the m-th row of e where ones stand. Then there exists j such that l 

m {rl,m~ rd~m], m for all m c W one has V(Yjj) . . . . .  In particular~ !Yjji = d. 

m 
c) rg Y = ~i dim Xit. 

Proof. By the definition of the simultaneous stabilization~ 

f!q) c e for all q e W. 
l r 

The equality between 

is easily verified. 

a. 
z 

Let us prove (b). 

and assume f(m) n e 
q i 

f!m) N e ~ 0 implies 
l r 

By s t a b i l i t y  with r e spec t  to O2~W ~ ~ i  = a i  er -  

and the number asserted in Part (a) of the theorem 

Define s by the condition ym = (y~n). Take f(m) C ym 
ss q sj 

0. Then mEW f(m) = aq e . q 

However~ every non-zero entry of every matrix f(m) 
q 

row. By the condition f(m) c e. (which follows from f(m) A e i ~ 0) q -- z q 

~m)) < I~ hence a = i. d(f J d(ei) = d. Now (a) implies that aq _ q 

m 
d(f~ m)) = d(ei) ~ that is IYjjl = d(f~ m)) = d(ei)- 

Let us now deduce (c) from (b). By (b) for any 

j = j(i) 

implies 

is contained in the m-th 

one has 

But then 

e i c k U Xkt , there exists 

satisfying the conditions of (b). In particular~ the equality j(i) = j(r) 

m ~ k  i = r. Since ~IYjj! = ei ~t d(er) = IXI' (c) follows. 

4.8. Corollar~. Under the conditions of 4.7, the blocks Y~i of the graph %m(X) 

can be numbered by the numbers of those e i which lie in ~ Xkt . 

Proof follows directly from (b) and (c)~ cf. also the end of the proof of Theorem 4.7. 

4.9. Suppose that the variables of a stationary graph X are linearly ordered and 
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[~ij(X)} = Stab{~i(X ) ~ ~j X)] 

m 

(simultaneous stabilization). Define the graph ~ = (xij) 

a) xij = xij for (i, j) @ W X W; 

b) ~,. = x for all i; 
ii II 

c) ~ij > X--kt if (i, j) £ W X W~ (k, t) @ W X W; 

d) ~ij = Xkt for i~ j~ k~ t c W z i / j~ k ~ t~ if and only if the pair 

Composition of ~ij(X)) coincides with the pair (Xkt ~ composition of Xkt(X)). 

e) xij > Xkt ~ for i~ j~ k~ t e W~ i ~ j~ k ~ t~ if and only if the pair 

(xij ~ composition of ~ij(X)) > the pair (Xkt ~ composition of Xkt(X)). 

Set O3~w(X) = Stab X. 

4.10. Lemnm. Suppose that X ~ ~I~w(X) ~ O2~w(X). Then 

a) The algorithm X > O3~w(X) is invariant. 

b) Aut X = Aut O3~w(X). 

Proof. Evident. 

in the following manner. 

4.11. Suppose that the variables of a stationary graph X are linearly ordered and 

that X ~ ~I~w(X) ~ ~2~w(X) ~ ~3~w(X). Let ~ (X) = ~ z i f(P~q) Take e c X pq i " r tt 

(recall W = V(Xtt)). Set 

(xij 

~ ~ f!P~q) 
l~r (p~q) an edge of e i 

r 

Let 



118 

m(i,r) 

~. ~ a 
l~r j:l irj girj 

where air j > airj+l~ air j > 0~ girj (0~ l)-matrix. Set 

Stab N n N U4~W (x) = X(glll "'" gllm(l~l) "'" 
N 

. . .  gn~d~m~n,d -~# 

where d = dim Xtt. 

4.12. Len~na. Let 

a) The algorithm X > O4~w(X ) 

b) Aut X = Aut ~4,w(X). 

Proof. Evident. 

X ~ OI~w(X) ~ U2~w(X) ~ ~3,w(X). 

is defined invariantly. 

4.13. Definitions. Let 

ordered. We say that X 

respect to W = V(Xtt)3 

X be a stationary graph whose variables are linearly 

is stable of depth 1 (or §imply, X has depth I) with 

if 

X ~ OI,w(X) ~ O2,w(X) ~ ~3,w(X) ~ O4,w(X) 

H 
We say that X has depth 1 with respect to W = tk~e.j V(Xtt) if X has depth I 

with respect to every V(Xtt) ~ t e J. We say that X has depth i if it has depth 

i with respect to V(X). 

5. Con~nents on the definition of stabilization 

5.1. For an arbitrary daughter system Dw(X) = [yl -.., ym}, let us set 

=Stab[Y i} = {~i }. Then the operations ~i,W can be easily defined (one should 

substitute ~ (X) by ~i in the corresponding definitions). The Lemmas 4.2~ 4.5~ 
i 

4.10~ 4.12 hold if the system Dw(X) is defined invariantly. 

5.2. The operations ~i,W can be complemented by an operation which is a hybrid of 
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stabilization with respect to the kernel~ and of the operation $1~W" Namely~ for 

every i ~ W, one can consider the numerical invariants ~3,~(~Wi(~i(X))) (cf. 

E 6.2). Analogously one can consider 

~3,~(~Wi N Wj(Xij(X)) ) 

etc. Here W. are invariantly defined subsets of V(Xi(X)) 
1 

6. Depth > I and variants of definition of depth 

In this subsection we give only definitions or sketches of definitions. 

6.1. Let us say that X has depth (m + I) if hi(X ) has depth m for all 

i e v(x). 

6.2. The depth m can be defined via the consideration of the system of graphs 

~i(~j( ... Xt(X ) ... )), where l[i, j, ..., t} I = m, i, J, ..., t lie in 

invariantly defined subsets and where stabilization is simultaneous for all sets of 

those graphs. 

6.3. One can say that X has depth m if the number of graphs belonging to any 

given isomorphism class of graphs of degree ~ m and containing a given edge xij , 

depen~ only on the isomorphism class and the "color" of x .. 
ij 

In this sense a stationary graph has depth 3. A variant of this definition 

and arising properties are discussed in Section AD. 

6.4. Let X = i~I x i e i be a stationary graph. Define the "dual" graph ~ in the 

following manner. 

a~ ~ " 

= (Xij) ,JEI i ° ; 

A 
b) V(Xii) is the set of the edges of the graph el; 

c) If a is an edge of el and b is an edge of ej~ then the "color" of 

A 
the edge ( a , b )  o f  X i s  t h e  " c o l o r "  o f  t h e  t r i a n g l e  c o n s t r u c t e d  on t h e  v e r t i c e s  o f  

and b if a and b have a common vertex and the set of the "colors" of the quad- 
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rangle constructed on the vertices of a and b if they have no common vertex. 

^ 
These conditions permit one to fill the entire matrix X by variables depending 

on the type of relation of the edges. 

Now oonsider Stab ~ and say that X has depth (or height?) i if blocks 

A A 
X. do not decompose in the graph Stab X. If~ however~ they decompose s the dif- iI 

ferences among the edges of graphs e. are revealed, and the dimension of X can 
i 

be invariantly increased (as in 4.1). 

The graph ~ is perhaps an interesting object. However~ no results are known 

to us about this graph~ and we~ therefore~ proceed without stopping. 

7. Examples. It is difficult to give detailed examples~ where the procedures de- 

scribed above really work. Indeed~ such examples would be first encountered among 

graphs with 25 vertices and~ therefore~ would be very complex. 

We shall give partial examples using the graph from 26-family. Partial means that 

we shall not compute Oi~W, but we shall only show that the result of CI~W can be 

different from the result of Stab and that it can give a partition into orbits of 

the automorphism group even when X is a cell. 

7.1. A common assumption in the examples given below is that for the neighbor graphs 

F of the 26-family (given by the pictures in Section U), the stationary graphs 
i 

Stab X(Fi) are different (have different structure constants a~. lj). We shall not 

check this here. 

7.2. Our approach is as follows. Let e be the matrix #i from the 26-family 

(of. Section U). Consider the graph 

X = x E26 + y e + z(I26 - e) 

Instead of the graphs k (X)~ j = I~ ..., 26, we shall consider only the neighbor 
J 

graph in e of the vertex j. The isomorphism class of this neighbor graph is given 

in the coluron "TYPE" on the same table as e itself. By the assumption stated in 7. i~ 

this information is sufficient to give (with the help of CI~ W) the partition of 
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V(X). We shall refine this partition using some special properties of neighbor 

graphs. Our aim is to achieve partition into orbits of Aut e (this partition is 

given on the same page as e itself). 

7.3 Let us take i = 3 (the 26-family, #3). the vertices according to the 

type of their neighbor graphs fall into the following groups: 

(I~2,3), (4~7,13,18), (5,6,12), (8,9,14,15,21,22,23,24,25), (10,11,16,17,19,20), 

(26). 

In particular, we infer that in OI,w(X ) = (Yij) we have ~26} = V(Yii ) for 

some i. Now consider the neighbor graph of the 26-th vertex. It is of type 2. 

In this graph only vertex 5 (in canonical numeration) is not contained in any 

triangle. Therefore, the fifth vertex of the neighbor graph of the 26-th vertex is 

separated. So we have separated 4-th vertex (that is, V(Yjj) = {4} for some j). 

In the neighbor graph of the 4-th vertex (which is of type 3) on~ the vertices 

(1,2j3~23~24,25) are contained in triangles. This partition together with the 

partition given above (corresponding to the types of the neighbor graphs) gives us 

(as the intersection) the partition into the orbits of Aut e. 

7.4. Let us now take i = 9 (the 26-family, #9). This case is somewhat more 

difficult because there are only 4 types of neighbors, and because the result we want 

to achieve is the split graph. Only vertex 1 has the neighbor graph of type 7. Hence 

in OI,w(X) = (Yij) we have [7} = V(Yjj) for some j. Therefore, in addition to the 

partition of the vertices according to the neighbor types~ we get the partition 

~I}, [2,11], [12,26] 

The intersection of this partition with the partition according to neighbor 

types gives us the partition 

(1) z (2,6,7,11), (3,4~5,8,9,10), (12,18~25), (13~15,17,20,22,24,26) 

(14~16,19~21~23) 

(*) 



Consider the vertices 12~ 18~ 25. 

2+11 with the following multiplicity 
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Their neighbor graphs contain the vertices 

(7,10) -- with multiplicity 0 

(2,4~8,11) -- with multiplicity 1 

(3,5~6,9) -- with multiplicity 2 

Since [I} = V(Yjj) 

of some V(Yss). 

Intersecting the sets of (*) and (~=)~ we get the following partition 

for some j, it follows that the three sets above are unions 

(**) 

(I), (2,11), (3,5>9), (4~8)~ (6)> (7)~ (I0), (12,18,25) 

(13,15~17~20,22,24,26), (14,16~19,21,23) 

(***) 

This shows that the intersection of this partition with the neighbor sets of vertices 

6, 7, I0 is invariantly defined. These sets are respectively 

(1,3,4,10,16,18,19,24,25,26) 

(1,3,4,11,17,20,21,22,23,26) 

(1,6,8, 9,13,14,17,21,24,26) 

The intersection of these sets with (***) gives us the partition 

(i), (2), (3), (4), (5), (6), (7), (8), (9), (I0), (ii), (12)~ (13), (14), (15), 

(16,19), (17,20), (18,25), (21), (22), (23), (24), (26) 

To split the remaining three pairs 

(16,19), (17,20), (18,25) 

note that the neighbor graph of the vertex 2 contains vertices 16 and 17 but does not 

contain vertices 19, 20. It splits the first two pairs. The neighbor graph of the 

vertex 4 contains vertex 25 but does not contain vertex 18. This concludes the split- 

ting. 



P. EXAMPLES OF RESULTS USING THE STABILITY OF DEPTH I. 

I. Statements and proofs of theorems given below make use of the notions introduced 

in the preceding Sections. The theorems themselves are sna~gues of some simple results 

of permutation group theory. This implies that possibly deeper results of that 

theory can also be restated and reproved in the setting of cellular algebras. 

2. Theorem 2.l,below, is used in the algorithm of Section R. In fact~ this theorem 

is a justification of the approach taken in that algorithm. 

In this Section~ X stands for a stationary graph with linearly ordered 

variables. 

2.1. Theorem. Let X = (Xij) be a stationary graph of 

W = V(XII)~ IWI = n. If ki(X) = R for i C W, then 

a) O~.(XII) ~ ZIG], 

b) Aut X ~ G; 

where G is a group of order n; 

depth i with respect to 

c) the orbits of G are the sets V(Xii). 

Proof. Since ~.(X)l = R~ one has by Theorem 04.7b~ d(e m) = 1 for any e m c XII. 

Hence (a) follows from G I. 

Let us now use Theorem O3.5. Note that one has (in the notations of that theorem) 

depth I with respect to W. Hence Theorem 0 3.5 and (a) W I = W, since X has 

above yield (b). 

Let us prove (c). Again,by condition k (X) = R, and by Theorem O 4.7b~ one has 
i 

d(em ) = i for em c Xlt. Fix m so that e mC Xlt° Then em defines (of. 1 3) 

Xtt as the factorgraph of XII. Let VI~ ..., V r be the imprimitivity system for 

XI1 defined by em. The action of G on V(XII) induces the transitive action of 

G on the sets V i and, consequently, on V(Xtt ). By (b), G acts as an automorphism 

group, hence (c) is proved. 

Remark. Actually~ the fact that Xtt is a factor of XII permits one to identify 
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V(Xtt ) with G/H for some subgroup H of G~ and the action of G on both sets 

coincides. 

2.2. Proposition. Let X be a primitive cell of depth I~ yq = Xq(X) = (Y~j). 

Then either IY~i I > i if V(Y~i) ~ {q} or ~(X) = ~[Zp]~ p a prime number. 

Proof. If IY~i I = I~ let el be the corresponding basic graph, according to 

0 4 . 7 ,  4 . 8 .  Then d ( e i )  = 1. Our a s s e r t i o n  now f o l l o w s  f rom K I .  

3. Theorem. Let X = (X) be a stationary graph of depth I with respect to 
lj 

W = V(XII). Assume that there exists a basic graph e m c XI2 such that d(em ) = 2. 

and a normal Then there exists a non-oriented (i.e., simple) graph e t X22 

subcell ~ in XII , such that XII/~ contains the basic graphs ej~ j ~ J, whose 

sum j~j e. is isomorphic to the edge graph of graph e In particular, 
j t" 

IX221 • d(et) 
IXll/~q = 2 

i 
Proof. Put yi = ~ (X)I = (Ykl)~ i ¢ W. Since em c XI2 , X has depth 1 with 

respect to W, and d(em) = 2~ it can be assumed (cf. 0 4.7, 4.8) that IYimm I = 2~ 

Yimm c X22 and v(yin) is defined by ei in the manner described in 0 4.7, 4.8. 

We have Yimm = x E 2 + y ~2" Then there evidently exists et c X22 such that 

! = e t N Yimm = ~2" It is also clear that e t is unique and that e t e t. Since 

e t fl Yimm = ~2~ i defines an edge of the graph e t. Let D be the set of the edges of 

the graph e t. We defined the map @ : V(XII ) ....... > D. Let us show that it is sur- 

jective. Let Yimm = x f~i)+ Y f~ i)~ where f~i)= ~2" Since X has depth I, 

we have ~i f~i) = a e t which is equivalent to surjectivity. 

Now let ~ be the normal subcell of Xll defined by equality of the rows of the 

matrix e (cf. J 2). Note that the corresponding imprimitivity system coincides 
m 

with {'@-l(d)}dc D. Thus we have the equality IXII/~I = IDI = IX221 • d(e t) • 2 -I. 

Consider the factor-graph ~ = (~ij) of X by the system of normal subcells 

~ <~ XII ~ I c Xii ~ i > I}. If ~m is the image of em in XI2 ~ then d(~m ) = 2. 

Hence we can assume that ~ = X~ ~ = I, and ~ ~= e . We have 
m m 

em • e'm ~ XII~ e m • e'm = 2el + k~l akmm' ek~ where e I is the unity of the cell 

OfF(XII). Since ~ = I, no pair of the rows of e m coincides. Hence ammk, = 0 or 
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i for all k ~ I. Put J = [k : ar~a, = i}. Let us show that ~ = ej is the 

edge graph of e t. Take p~ q ~ W. If ~(p) and ~(q) have a common vertex, 

then the rows of matrix e with numbers p and q have ones in the same column. 
m 

This means that the edge (p, q) is an edge of the graph e. The converse 

assertion is proved identically. 

4. (Compare rWi I, 17.7], rQu i])~ [Ca I]) 

4.1. Let X be a primitive cell of depth I~ X = Z x i ei, n i = d(ei) ~ 

ei ej = E a~j ek, YJ = ~.(X)j = (y~t) = Z Yi fJ'i Suppose that the diagonal blocks of 

YJ are numbered according to O 4.7, 4,8 by numbers of those e which split them 
I 

J = Sm~ m > 2. off. Let YII 

J = x E m + y ~ and take q(j) so that eq(j) ~ Y~I = L' Since X 4.2. Let YII m 

has depth 1 (and is, in particular, stable under CI,W) , one has q(j) = q(k) for 

all j~ k ~ V(X). Hence there exists a unique q such that for all j c W one 

has e N y~l = L q 

i 

*. q 

q 

4.3. Theorem. 

q = q~ 

i 
alq = m - i, 

n divides 
q 

n > m 
q 

a q > m - 2 qq -- 

m(m- i) 

Proof. Since L = 4' = e' ~ q'. m~ we have e q~ i.e.~ q From the Figure in 4.2~ 
q 
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one has I aq alq = m - I~ qq _ > m - 2. Since (cf. D 4 c 8) 

i = nq a q 
m(m - I) = n I alq I'I 

O 

we see that n divides m(m -I). If n < m - I~ then a~, I~ > m~ that is q q -- _ 

a~, I = m. By K3 this implies imprimitivity of X~ which contradicts 

our assumptions. Hence n > m. Suppose n = m. q - q 
i 

Let r be a complete subgraph of e , defined by the condition ~i N YII = Im" 
l q 

Then every edge of e is contained in a = m(m - l)n' lq graphs Fi~ and every 
q 

vertex is contained in the m graphs r i. 

contain t ~ V(X). Since a ~ 17 one has 

and t itself). If n = m, 
q 

(primitivity)~ it follows that 

Let V i = V(~i ). Let V I ..... 

10 Vil = nq + i (= the neighbors of 
i=l 

then, -J , I ~ ~ Vil = m + I. Since V ~ V for 
i j 

is a complete graph with (m + l)- 

eql 0 Vi 

i~:~l 

i~j 

vertices~ that is~ it is a connected component of e . A contradiction with H 12. 
q 

5. Theorem (cf. [Wi i~ 10.4]). Let X be a cell of depth 1 and suppose that for 

all i c V(X)~ the stationary graph ki(X) also has depth I. Let 
d 

X = i2~__0 x i ei~ e 0 = En~ d(ei) = m for all i e [I~ d]. Then either ki(kj(X)) is 

split for all i~ j C V(X)~ or X is primitive. 

Proof is given in a series of steps. Suppose that X is imprimitive. Let ~ he 

a normal subcell in X~ and VI~ ...~ V b he the corresponding imprimitivity system. 

Set IVil = r 3 X = (Xij) ~ V(Xii ) = V i. Let s t be the t-th row of X. Let ei, 

i ~ J~ define our normal subcell, that is, e i ~ ~ if and only if i 6 J. Put 

IJI = a + I. Evidently~ 0 c J. 

We shall show that our assumption leads us into the first case of the alternative. 

5.1. (m, r) = i. 

Proof. r = IVll = i~J d(ei) = I + am. 
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5.2. lejNs nxktl<l if k ~ t. 
q 

Proof. If q ~ Vk~ then the intersection 

that q £ V k. Set Sq~ t = Sq ~ ~t" Let 

is empty. Hencej it may be assumed 

lq, t = ~i : e i n Sq, t ~ 0}, F=i~l e. 
q~t l 

Let T be the set of neighbors of the vertex q in the graph F. We have 

T = ~[ J V(Xii) , where the sum is taken over those j for which I = I 
q,j q~t 

(by similarity of rows~ cf. I I.i). Henc% r divides T. On the other hand~ 

ITI = Ilq,tl. By 5.1 it follows that r divides llq~tl. Since llq~tl ~ r, 

have llq~tl = r, whence our assertion. 

5.3. If p c Vi, q e Vj~ i ~ j~ then 

we 

Xp(Xq(X)) ~ gV ~ (Xp(~q(X)) 
lj 

Proof. Set Y = ~p(Xq(X)), Z = ~q(~p(X)). Since X is imprimitive, it follows 

that the blocks with the numbers from i to a of the central decomposition of the 

stationary graph ~q(X) all lie in X.. (we suppose here that they are numbered 
JJ 

according to 0 4.7~ 4.8). The above remark and 5.2 imply that deletion of 

p e Vi, i ~ j, splits YIVj~ that is, Y ~ ~vj(Y). Analogously, Z ~ ~vi(Z). 

Since evidently Y ~ Z, our assertion follows. 

5.4. Xp(Xq(X)) = R for all p, q e V(X). 

• f(q) Proof. Let q e V Set Yq = ~ (X) = (Yq) = E Yi We have 
i q lj i " 

a 

V. = q U U V(Ysqs). By 0 4.7, we have IYq I = m for all s ~ 0. Let p e Vj, 
i s=l s 

j ~ i. Then ), X splits V.. 
p q i 

Let p ~ v(Yqt). Since Yq has depth i, then by 0 4.7~ d(fk) = I for all 

fk c Yq ts' I < s < a. Since IYqtt I = IYqs I = m~ it follows that d(f~) = I. Consider 
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now Yq • yq c yq . It follows from above that d(fk) = 1 for all fk c yq 
ts st tt tt ~ 

i.e., Yq = Z[G] Now 5.2 and the condition d(fk) = d(f~) = I for all fk c Yqs' 
tt 

s < a~ imply that Yq = Z[G] for all s < a. Since t was taken arbitrary 
-- ss -- 

from numbers greater than a (to satisfy v(yqtt ) N V i = 6), we have Yqtt = Z[G] 

for all t ~ 0 and Yqtt "r Yqll for all t ~ 0. Therefore, d(fk) = d(f{) = 1 for 

all k. 

Thus our assertion~ and the theorem~ are proved. 



Q. SOME DEFINITIONS AND EXPLANATIONS ABOUT EXHAUSTIVE 

SEARCH. 

i. Below we give some definitions related to exhaustive search. 

Wedothisinorder to construct a frame of reference for subsequent Sections. 

Descriptions of algorithms are usually omitted; if these algorithms are suf- 

ficiently complicated, use very ambiguous or, on the contrary, very formal (e. g. , 

ALGOL) language. We tried to take the middle road. So we stopped at some 

distance from complete strictness (and senselessness). 

It seems that the formalism proposed below is suitable for the description of 

some exhaustive methods. It was used, in particular, by G. M. Adelson-Velsky, 

V. Z. Arlazarov and M. V. Donskoy to prove optimality of the branch-and-bound 

method and to describe in a more exact language new developments in their chess 

program (which, it should be reminded, won world chess programs' competition 

in 1975). 

Z. Let us first give a very approximate and down-to-earthdescriptionofthe 

notions involved. 

First of all exhaustive search is a method used to solve problems of the fol- 

lowing kind. We are given a finite set V and we are required to find one or several 

elements of V satisfying certain conditions. 

Z.i. If elements of V are given explicitly, then one checks every one of them 

in turn for the required property. 

Z.Z. But usually the situation is more complicated. Namely, usually we are 

given rules for the construction of some subsets, say V 1 ..... Vrn of V, and for the 

subset V.l we are given rules for the eonstructionofits subsets Vli ..... Vd([)i, and 

so forth. The elements of Vwill aDpear as one -point subsets somewhere far down 

t he line. 
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The rules which are used to construct subsets may depend and, as a matter 

of fact, sometimes do depend on the set to which they are applied. 

Z.3. It is customary to associate with the above sequence of subsets an oriented 

graph. The set of vertices of this graph is the set of all subsets of V, which 

were constructed by the application of the rules. So the sets V,V i, V.., etc. ,are vertices. 
lj 

Vertex a is joined to vertex b, if the subset corresponding to b is obtained 

from the subset corresponding to a by the application of the given rules. V repre- 

sents the root of this graph. 

If every subset is constructed at most once, the resulting graph is a tree. 

This happens for example in the case when the application of the rules so any subset 

generates disjoint subsets. 

Z.4. An exhaustive search is described by the orderinwhichweconsiderthevertices 

of the graph described above. If our search brings us to some vertex of this 

graph, the length of the path from the root to the vertex under consideration is 

called the depth (or the level) of our search at this moment. This definition 

depends on the path which leads from the root to the given vertex. If there 

is only one such path {that is, if the graph is a tree), the depth of the search 

depends only on the vertex. 

Z.5. The usual order of the search is called "depth-first search". In this search one 

goes down to the end point, say al, of some path say an,...,al. If this end point 

is a solution of our problem, the search is finished. If it is not, the search takes 

T in turn all successors of az, then a new successor of a3, say a2, and considers 

in turn its successors. I~t cetera until a solution is met or its absence is established. 

In this way the required storage space is of the order of the maximal 

length of a path in our graph, (We have to remember the whole sequence of sub- 

sets as well as the information about the next successor for every one of these 

subsets. ) 
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An antipode to the depth-first search is "breadth-first search". In this 

search one first constructs all vertices of the first level, then all vertices of the 

second level and so forth. In this cases generally speaking, we have to use 

storage space of the order of the number of vertices of the given level. I~Iowever 

it is possible that, having that much information,one would be able to establish 

thatserneofthe subsets of the given level do net contain the searched-for points of 

V and therefore can be rejected (cf. Z.7, 3.5). If this does not happen, the 

breadth-first search would fail,owing to the lack of storage (which is even more 

scarce than time). 

The algorithm of R8. I is a breadth-first search (it is not meant to be 

programmed) and the algorithms of Sections S, T are depth-first searches. 

Z.6. A rough estimate of the "time" to be consumed by an exhaustive search can 

be obtained in the assumption that the application of the rules to every subset uses 

the same amount of time. Then the general amount of time is a multiple of the 

number of vertices we searched through. 

Z. 7. In many cases there exist (and sometimes they indeed are known) means to 

establish the absence of elements with required properties. The applica- 

tion of the corresponding criteria is called variant rejection or cut off. 

Z.8. Frequently (cf., 6. Z) there are several ways to associate an exhaustive 

search to a given problem. In this case the choice of an exhaustive search affects the 

possibilities for variant rejections. It is natural to organize an exhaustive search 

in such a way, that the number of vertices searched through would be as small as 

possible, 

In other problems rules are given explicitly (cf. 6. l). 

Z.9. The time required for a search can also be saved by a clever choice of the 

order in which vertices are searched. 

2.10. The sequence of vertices of a search graph is called a forced variant, if the 
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applicationofthe rules tothe corresponding sets gives rise to subsets of which at 

most one is not subject to variant rejection, l?his rrleans that during the searchwe 

have to move only in one direction from the vertices of the forced variant. 

Examples of forced variants are in TZ.4, T3.4. 

Z. Ii. Speaking about variant rejections and the choice of an order of a search, we 

have to keep in mind that it costs {computer) time and (storage) space to implement 

sophisticated procedures. The price of each verification for a possibility of a 

variant rejection can be high (for example, it can involve some exhaustive search 

in itself),but the number of rejected sets carl be small. In this case the use of 

such a variant rejection would be wasteful. Similarly a complicated choice of an 

order of a search ("What will be my next step?') can be improper. 

Often we do not know the price of an application of the corresponding deci- 

sion procedures. In this case the success of their use depends on the ability to do 

a rough experiment, and on good luck. Such procedures, which will hopefully lead 

to a speedup (but one does not know for certain whether they will have this or the 

opposite effect we call heuristics (exarnDles are T2.5, $3.4). 

Sometlmes considerations leading to powerful variant rejections, but 

possibly to a wrong result (if a child was thrown away along with a bath),are also 

called heuristics. We do not use this word in this latter sense in this volume. 

3. A formalization. 

3.1. A description of a problem. 

For a finite set V let P(V) denote the set of all subsets of V (in 

particular, IP(V)l = zIVl). We identify V with the subset of P(V) consisting 

of all one-element subsets of V. 

Suppose we are given a computable function F : P(V) -~IN. It will be 

called an estimate function. 
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Problem: Find a subset U ~ V such that F is defined on U and attains 

its maximum value on U. 

3. 2. Exhaustion. 

Define a function of an exhaustion as a computable map 

f : P(V)  -+P(P (V) )  

s a t i s f y i n g  the  f o l l o w i n g  c o n d i t i o n s  

a) If f(U) i s  d e f i n e d  f o r  U e P ( V ) ,  t h e n  F(U)  i s  d e f i n e d ;  

b) If f(U) i s  d e f i n e d  f o r  U e P(V), t h e n  f(U) E P ( P ( U ) ) ;  

c) At  l e a s t  one s u b s e t  U, w h i c h  i s  a s o l u t i o n  of our  p r o b l e m , b e l o n g s  to  the  

i m a g e  of f i ( v )  f o r  an a p p r o p r i a t e  i.  

3 . 3 .  T h e  g r a p h  of an  e x h a u s t i o n .  

T h e  g r a p h  T of t h e  m a p p i n g  f i s  c a l l e d  the  g r a p h  of e x h a u s t i o n  f. 

M o r e  e x p l i c i t l y  

a) the vertices of T are elements of P(V) where f is defined and 

t J i 
which belong to i>~f (V). 

b) There is an edge from a ~ V(T) to b e V(T) if and only if a e f(b). 

(Here and below we identify vertices of T with elements of P(V)). 

Then {V} c P(V) is the root of T. Let T(m) be the setofthevertieesof T 

which are at a distance m from the root of T. If U ~ V(T) let 

O U : f(U) 

be the set of all successors of U, and 

PU : {M E P(V) Iu ~ f(M)} 

the set of all predecessors of U. Let T(U) be the graph of exhaustion 

fIB(U) (it is the subgraph hanging at U ~ V(T)). 

Finally, let End T = End f be the set of all terminal points of T, that 
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is, the set of all U E P(V) such that f(U) is not defined, and Solv T = Solv f 

the set of all U ~ P(V) which are solutions of our problem, 

3.4. Search on the graph of an exhaustion. A computable function 

: ~ ~V(T) 

is called a search if 

a) n~]N (p(n) contains a point from Solv T; 

b) ~9(n+l) ( k~<< ~n) 

An exhaustive search is therefore a triple (T,~,F), where T is the tree 

of a search, ~0 is a search over T and F is an estimate function. 

3.5. Variant rejections. 

Let (T,q~,F) be an exhaustive search, i computable function 

: p(~) : IN -- {0, I} 

is called a variant rejection or cut off if 

p(n~): 1 V(T((p(n) ) ) ] (~  Solv T ~: iV(T) 

(which means that we preserve solutions). Here T(~E~n)) is T(U) from 3.3b) for U=9~n). 

Given a variant rejection p for a search (T,(p,F), one can construct a new 

search (T, ~, F) in the following manner. Set 

~0'(n) : (p(n) if (p(n) ~ p(i~=l__ V(T((p(i))) 

i<n 

~0'(n) is not defined otherwise. 

Now construct a monotonic numeration ;~ : ]N -~ ]IX[ of the points n ( iN, for 

which (p'(n) is defined,and suppose moreover that if n is in the image of ;~ 

then all [ < n are in the image of ~. Then set 

~{n) : ~'(~(n)) 
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4. Mass problems. 

The above notions become somewhat more interesting if one considers them 

in the case of mass problems. 

Suppose we are given a tree T and a family of exhaustions ~ = {(T,99, F)}. 

It is usual to subject the elements of ~ to conditions of coherence. Namely, we 

require the existence of a computable function 

7r : LNX £- , -V(T)  

such that the restriction of ~r to the fiber of IN X ~ over (T,%P,F)'~ ~: 

7r : IN X (T,99,  F) -~V(T) 

coincides with 99 (and is therefore subject to conditions a), b) of 3.4). Moreover, 

we have to assume that our exhaustive search does not depend on the future, tlqatis, 

i f (T,~9, F)., (T,991, F1) ,  ~ and i<~nn99(i) : i~n 991(i) and Fli<k~nqg(i) = F l l i ~n  991(i ) 

then ~(n+l, (T,99,  F)) = 7r(n+l, (T,991 , FI) ). 

Now we can also define the variant rejection as a computable function 

p : ~ x $ - - , - { o ,  1} 

such that its restriction to every (T,99, F) is a variant rejection in the sense of 

3.5 and which satisfies the additional conditions stated below. 

One is the following. If (T, 99, F) c $, (T, 991' FI) ~ $ and 

i~n 99(i) = i~n 991 (i) and Fli<~ n~0(i) = Flii<k~n 991(i) then p(n+l,(T,q~,F)) = 

p(n+l, (T, ~i' F1))" 

The second one is the requirement that the new family of searches construct- 

ed from ~ with the help of the family p of variant rejections (as in 3.5) forms 

a family of searches, subject to the condition of independence from the future. 

Then one can use variant rejections to construct new searches. 
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5. Some examples of variant rejections. 

5.1. Suppose that F is monotonic in the following sense 

F(UI) > F(U2) implies F(Vfl) > F(WZ) for all W 1 

W Z ~ f(Uz). 

In this case one can set p(n) = i, if there exists m < n 

F((p(m)) > F(g)(n)), 

f(u l) and all 

such that 

and set p(n) = 0 otherwise. 

5.2. Suppose a finite group G acts on T in such a way that 

F(ga) = F(a) for a ~ V(T) 

(Here we consider F as a function on T). Suppose we have an algorithm of 

canonization,which ascribes to every element t ~ V(T) a point Canon t on the 

same orbit G.t of G as t, and such that Canon t = Canon s for s e G't. 

Set 

p(n) = 1 if ~P(n) ~ Canon 9~(n) 

This approach is used in Section R below. 

It is useful to find some algorithm Canon, or to construct a search 

such that if (~(n) = Canon 9~(m) then n < m. Otherwise,the use of the above 

variant rejection may make the search less effective. 

6. Examples of some searches. 

6.1. Checkers. 

Let a position A on a board be given. Consider the problem of finding 

a move for black which leads to the best position for white (in some fixed sense) 

among all positions which are at a distance of 3 successive moves from A. 

In this case, V is the set of all positions on the board which can be 

obtained from the given one in 3 steps with the first step made by black. V is 

not given explicitly (cf. 2.2) and the rules to construct subsets (checkers moves) 
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are fixed (cf. Z.8). So the tree is constructed uniquely. However, we are free to 

chose the order in which vertices should be searched (i. e., function ~). 

6. Z. Strongly regular graphs. 

Problem: find all (up to isomorphism) non-enapty and non-complete 

graphs on n vertices ,such that every vertex has m neighbors ,and two vertices 

which are (resp. are not) neighbors have the same number d I (resp. d 2) of 

common neighbor s. 

The set V is the set of all graphs on n vertices. The rules for 

constructing subsets are rather arbitrary. Let us describe two possible 

choices. 

6. Z.l. Let V(i) be the set ofthe graphs on n vertices, such that every one of the 

first i vertices is incident to m edges, and there are no edgesbetweenthevertices 

n-i+l ..... n, and any two vertices which are (resp., are not) neighbors have ~d 1 

(resp., ~dz) common neighbors. For a graph F~ V(i), the associated subset 

of V consists of all elements of V which coincide with F on all edges from the 

first i vertices. The set QF = f(l~ (cf. 3.3) consists of all graphs from V(i+l) 

whose first i vertices have the same connections as F. 

6.Z.Z. Let V'(i) be the set of all graphs F on n vertices ,such that there are 

no edges from the first i vertices to the remaining n-i, and at most m 

edges from any one of the first i vertices,and two vertices which are (resp., 

are not) neighbors have ~ d I (resp., ~ dz) common neighbors. For a graph 

Fc V'(i) the associated subset of V consists of all elements of V which 

coincide with F on the first i vertices. The set QF = f(l-) (cf. 3.3)consists 

of all graphs from V'(i+l) which have the same connections between the first 

i vertices as F. 



R. AN ALGORITHM OF GRAPH CANONIZATION. 

I. Below we show how the notions and approaches introduced in this 

volume can be used to describe an algorithm of graph identification. The 

algorithm of this section is not aimed to be programmed and therefore it may 

use "breadth first search" (cf. 8. l). The use of this type of search permits 

one to apply stabilization of depth 1 or more. The decisive point is the use 

of Theorem 03. 5 to find some orbits of the automorphism group of the graph 

under consideration. 

Another essential feature is the procedure designed to deal with correct 

graphs (cf. 5.4. g and 6.g) and direct sums (cf., 5.4.1 and 6.1). Below in sub- 

section 9 it is explained why this case requires special treatment. 

As was mentioned in the introduction, the algorithm of this section is a 

development of the algorithm of [We 3]. 

Z. Definitions. 

Z.i. Canonical algorithm 

An algorithm jr%, mapping the set ~)~ of graphs into itself, and defined 

everywhere on ~, is called canonical if 

a) for all X ~ ~(~ and for all g ~ Sym V(X) 

~7~(gxg-l) = ji(X) 

A canonical algorithm ~ is called a canonization al~orithm if 

b) for any X there exists g E Sym V(X) such that 

-i 
j%(X) = gXg 

Z.l.l. Remark. If one has an algorithm J[ of graph canonization, then it gives 

rise to an algorithm of graph identification, say B. Namely B consists of the 

application of jf~ to both graphs, and then in the comparison of the results. 

Z.Z. Semi-invariant algorithm 
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An algorithm ~ mapping ~ into itself is called semi-invariant if for any 

X ~ ~ and for any g c Sym V(X) there exists h E Aut X such that 

~/~ (gxg-l) = gh~(X)h-lg-I 

(Recall: Aut X = {h ~ Sym V(X) : hXh -l = X}.) 

The semi-invariant algorithms lie somewhere between invariant algorithms 

and canonization algorithms. If h is always unity, then ~/~ is invariant. 

3. Below we describe how one can construct canonization algorithms if 

some special kind of semi-invariant algorithms is given. 

3. i. Let ~ be a semi-invariant algorithm which places a split graph J~(X), 

whose variables are linearly ordered into correspondence with a graph X. Let 

m re(X) be the permutation such that the diagonal entries of m~(X)m -I = are 

positioned in decreasing order, that is ~if rn~(X)m -I = (y.) then 
ij 

Yii > Yi-l, i-l" Put 

Canonjq(X) = inXm "I " 

3. Z. Assertion. The map X -~ Canonj~(X) is a canonization algorithm. 

Proof. The validity of Z. ib) is ensured by construction. Now, if 

Y = gXg -I then ~(Y) = gh~(X)h-lg "I for some h E Aut X, since ~ is semi- 

invariant. Further,since both J~(X) and gh~(X)h'Ig -I are split, the substitu- 

tions m = m(X) and m I = m(gXg -I) are uniquely defined. Hence the diagonals of 

rn~(X)m -I and rnlgh~(X).h-lg-lmll coincide. Therefore m = mlgh. Now we 

have 

Canonj%(gXg -I) = mh-lg-l(gxg-l)ghm-i = mh'iXhm-i = n~Xm-i = Canonic(X) 

as desired. Note that the third equality used the condition h ~ AutX. 

4. Our canonization algorithm consists of several parts. 

The following two parts are most important: 

4. i. Splitting algorithm. 
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It is an exhaustive algorithm. The verticesoftheassociatedtree (cf. Q3.3) 

correspond to the stationary graphs. The set QX (cf. Q3.3) is either the set 

{k (X)} or the disassemblage of a correct graph X (cf. J6.7). In addition, 
m mE V(Xii) 

at a vertex of our tree the disassemblage of direct sums is poss~'ble. End 

points of our tree correspond to split graphs with linearly ordered entries. 

4. Z. Elevation algorithm. 

This part works on the results of the job done by the preceding algorithm. 

Using either the stabilization of depth I or O3.5, the elevation algorithm 

gradually, step by step, decreases the depth of the tree of 4.1. At every moment, 

however, endpoints correspond to split graphs. At the end of its work the 

elevation algorithm delivers a split graph. Then a canonical form is constructed 

according to 3.1. Note, that the elevation algorithm is invariant only in the case 

Aut X = i; in the general case it is serni-invariant (cf. 6.1, 6.2, 6.4 below). 

5. Splitting algorithm (denoted Split). 

5.1. Let T be a directed tree, T(k) be its k-th level. If v ~ T(k) thenlet Q 
V 

denote those vertices of T(k+l) which are connected with v; let P 'denote the 
v 

vertex from T(k-l) such that (P ,v) is an edge of T. Further, let T denote the 
v v 

tree hanging at v. 

5. Z. In our case T is the tree of the exhaustive algorithm Split. To every 

vertex v ~ T there corresponds a stationary graph denoted by X(v). 

5. Z. If v ~ T then X(v) is checked for validity of the following conditions: 

5.3.1. X(v) decomposes into a direct sum (cf. GZ); 

5.3. Z. X(v) is correct (cf. J6.6). 

5.4. Q , v ~ T, is defined in the following manner: 
V 

5. 4.1. If X(v) decomposes into a direct sum, X(v) = t(v}>i>l Yi (v) '  

Yi+l(v) > Yi(v), then  Qv : {Y1 (v) . . . . .  Yt(v) (v)}" 

5 .4 .  Z. If 5 . 4 . 1  is not  a p p l i c a b l e  but X(v) is c o r r e c t ,  then  Q = F(X(v)) ,  
v 

cf. J6.7. 
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5.4.3. if 5.4. i and 5.4. Z are not applicable, X : (X..) and icomposition of 
ij 

max (composition of Xii ) then Q : {krn(X)}m( 
Xtt) : i:IXiil>l v V(Xtt)" 

5.5. Remarks. 

5.5.1. Note that for v ~ T the tree T(v) corresponds to the algorithm Split, 

applied to X(v). 

5. 5. Z. Also note that in the case 5.4. l there is no branching of the exhaustive 

search at the point under consideration since X = X 1 ~ X g implies (as we shall 

see below) that Canon X = Canon X 1 ~ Canon X g. 

6. Elevation algorithm (denoted Lift). 

6. i. Assemblage of a direct sum. 

Let ~ be an algorithm on graphs, l~et X = m>~1>l X i. Renumber the 

variables of the graphs ~(X.) according to the lexicographical order 
l 

of (Xi, x~) for x ¢ ~,{(X.). Denote the result by dot' (Xi). 
J J 

Denote by Assembly iX) the graph, obtained in the following manner: 

In the matrix X, replace any entry of X. by the corresponding 
i 

entry of o~(Xi). Then Assembl~ (X) is the stabilization of this latter graph. 

Note that if ~(Xi) is split for all i, then Assemblyd~(X) is also split. 

If ~ is semi-invariant then Assembl~ is also semi-invariant. If ~ is semi- 

invariant and wq (X i) = R for all i, then 

6.Z. 

CanOnAssembl~ (X) : AssemblYcanonj~ (X). 

Assemblage of correct cellular algebras. 

Let X be a correct stationary graph which can not be decomposed into a 

direct sum. Let FiX) = {X.} be its disassernblage. For any algorithm on graphs 
l 

one can define their assemblage in the same manner as in 6. i. However we shall 

define it only for semi-invariant algorithms ~ which bring a split graph J{(X) in 

correspondence with 3<. In this case let us order the graphs X. according to the 
l 

(lexicographical) order of the gr~phs Canon (X). By J6.8 isomorphic graphs (that 
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i s , t h o s e  f o r  w h o m  C a n o n ~ [ ( X i )  = C a n o n j ~  (Xj)) d e f i n e  s o m e  s u b g r o u p  in  A u t  X 

which permutes isomorphic graphs as an appropriate group Sym. Therefore,if 

we d e f i n e  a n  a r b i t r a r y  o r d e r  w i t h i n  t he  i s o m o r p h i s m  c l a s s  we  o b t a i n  a s e m i -  

invariant algorithm. 

Explicitly, for J~(Xi)= (x ipq) construct Xi = ('x i )pq in 

--i x i x i i x > if >x 
pq rt pq rt 

the following m a n n e r :  

i xj x > if Cano pq rt n~ (Xi) > C a n o n j [ { X j )  o r  if 

Can°n~{Xi)cT~ = C a n o n ~ ( X . )  b u t  i > j .  
J~ J 

Again let us note that in the latter case the definition is semi-invariant by J6.8. 

If Aut X = i, then the latter case does not occur and the definition is invariant. 

Now denote by X the matrix obtained by substitution in X of the entries 

of X. for the corresponding entries of X,. Set 
1 i 

Assemblyj~(X) = Stab X. 

6. 3° 

It is a semi-invariant algorithm. 

Elevation in the case Q = {k.(X)}. 
v 1 

Let c]~ be a semi-invariant algorithm which maps every graph into a split 

graph with linearly ordered entries. Let I be the set of all i such that for all 

j one has Canon~(ki(X))~ > Canon^(k (X)).j{ In particular, all graphs k(X), 
-- j i 

i E I, are isomorphic. Set 

m = max i and Change^(X)=c~(k (X)). 
i~ I J{ m 

This operation is semi-invariant by 03.5. If Aut X = i then III = i, 

and our operation is invariant. 

6.4. Define inductively the elevation algorithm Lift. 

Let ~ be a subtree of T and denote the graph corresponding to the vertex v 
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of ~ by ~(v). Suppose that X(v)= X(v), and O (5): Q (T) 
v v 

~(v) is split if v ~ End~ . 

v~ ~nd¥. 

The tree T constructed for algorithm Split satisfies these conditions. 

Let us construct from T a new tree T in the following manner. Let 

v ~ End T, but Q (~)C End T . Then substitute for X{v} a matrix X(v) 
v 

o b t a i n e d  f r o m  X(v)  b y t h e  r u l e s  6 .1 ,6 .  2, 6 . 3 ,  if Q w a s  o b t a i n e d  f r o m  v by  t h e  
V 

r u l e s  5 . 4 . 1 ,  5 . 4 .  Z, 5 . 4 . 3  r e s p e c t i v e l y .  If v ~  E n d T  a n d  Q v ( [ - E n d T ,  p u t  

X(v)  = X(v) .  A I s o  s e t  V(T)  = V ( ~ )  - E n d ' S .  L e t  u s  d e n o t e  t h e  p a i r :  t h e  t r e e  T 

a n d  t h e  m a p  v ~ X ( v )  by  L g t  ( T , X ( v ) ) .  A l g o r i t h m  L g t  i s  e v i d e n t l y  s e m i - i n v a r i a n t  

(cf .  6 .1 ,  6. Z, 6 . 3 ) .  S i n c e  L i f t  ( ' T , ~ ( v ) )  s a t i s f i e s t h e  c o n d i t i o n s  on ~ ,  we c a n  a p p l y  

Lift recur sively. 

7. Canonization 

7.1. Let A be an arbitrary matrix. Construct (cf. MZ.I) X(A). 

7.2. Let X = Stab X(A). Construct for X the splitting algorithm (cf. 5), its 

tree T, and the correspondence v-~X(v). 

N 
7.3. Let N be the maximal length of the paths in T. Then I V((Lift) (T)) I = i. 

V((Lift)N(T)), (Lift)N(x(v0)). Let v 0 = X = The correspondence X -~X is a 

semi-invariant algorithm. Denote it by J%. 

7.4. Construct Canon (A) (cf. 3.1). 

8. Variants 

8.1. Simultaneous descent (Breadth-first search). 

It is possible to construct for the tree T of the splitting algorithm the 

entire following level T(k+l). Then one can perform the simultaneous stabilization 

of all graphsat that level and compare the results. Moreover one can in this 

case performthestabilizationofdepth (k+l) (cf. O6. Z). Insuchanapproacha 

picture would be more homogeneous and natural (but quite impractical, cf. Q. Z. 5). 
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8.Z. Successive descent (depth first search). 

It is possible to first descend up to the end of the most left branch of the 

tree T, and then move to the right. Such an approach allows one to save memory 

(cf. QZ. 5). Besides, with luck, one can find rather early automorphisms,and 

then use them in the same manner as in $3.3. 

9. Some explanations. 

When one is trying to handle the graph isomorphism problem, he 

first uses the ideas introduced in the stabilization algorithm. Then he applies 

the same ideas for graphs with one, two and so forth fixed vertices (i.e., an 

analogue of 5.4.3 above). Clearly this leads to a solution of the problem, but 

sometimes it can take too long to get to this solution. The first evident obstacles 

are direct sums and correct graphs. 

9.1. If X = Y~ Z then fixation of the vertices of Y does notaffect Z, andvice 

versa. So the depth of the corresponding tree of exhaustion is the sum of depth 

of the trees for Y and Z. Then the "time" required for such an approach is 

the product of the "times" required for Y and Z. 

However in the approach we used, we are dealing with Y and Z separately, 

and so the "time" is only the sum of the Utimes" for Y and Z. 

9. Z. Analogously, if X is a correct graph and {X.} its disassemblage, then 
i 

our approach again requires only the sum of the "tirnes"for each X., buta"straight- 
I 

forward" approach requires a product of "times". The simplest case is when X 

is a simplex, S . Then the straightforward approach requires m: steps. Our 
m 

approach requires one step. 

However ~nthe case of a simplex one can use automorphisnls (as described 

inS3.5)andgettheresultinlessthan rn'. steps. However, some correct graphs 

have no automorphisms permuting their parts and then once again one gets a factorial. 

9.3. Remark. Since some ki(X) could be direct sums,or correct graphs,even if 

X is neither, 5.4.1 and 5.4.3 could be used repeatedly by our algorithm. 



S. A PRACTICAL ALGORITHM OF GRAPH CANONIZATION. 

The algorithm for the construction of strongly regular graphs ,which is described 

in the next Section,constructs many (thousands of) graphs. Therefbre a program 

was written which canonized graphs constructed by the algorithm of the next 

Section. We describe below the ideas on which this program was based (we 

follow the exposition given in [Ar i]). Note that strongly regular graphs are 

rather difficult to handle, because theyhaveahighdegree of symmetry. On the 

other hand the algorithm of the preceeding Section is too bulky for practical 

purposes. An interesting feature of the algorithm of this Section is the procedure 

designed to construct and to use automorphisms of the graph, cf. 3. below. 

I. For the nXn (0.1)-matrices A : (aij) 

write 

and B : (b) 
D 

if the nZ-dimens[onal vector 

order) than (bli, blZ ..... bnn 

is the maximal form of A. 

with zero diagonal let us 

A>B 

(all, alz ..... ann ) is greater (in lexicographical 

). Let us then say that 

: max gag -i 

g~ Sym (n) 

We shall construct an algorithm J~ (mapping the set of symmetric (0,1)- 

matrices with zero diagonal into itself) such that 

~(A) : X 

Such an J~ will be a canonization algorithm (in the sense of the preceeding 

Section). 

Z. For an ordered subset V(k) : (i I ..... ik) of distinct elements of if, n] and 

for a matrix A of the same type as in I above, put (M[n stands for "Minor") 

Minv(k) (A) = (ast)(s,t)(V(k)XV(k)" 



Let us say also that V(n) = (i I ..... in) 

every V(k) = (i I ..... i k) one has 
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is a monotonic,,secluence for A if for 

Min (A) = max 
V(k+l) V(k+i) I V(k+l)~V(k) Mi~V{k+I}(A} 

The relation of the notions of a monotonic sequence and a maximal form 

is explained by 

Z.I. Proposition. Let A be a symmetric (nXn) (0,1)-matrix with zero 

diagonal. If A is a maximal form,then the sequence (I ..... n) is monotonic 

for A. 

Proof. Suppose that the assertion is false, let k ~ [l,n] be the smallest 

number such that for V(k+l) = {I, . .. , k+l} one can find s > k+l such that for 

V(k+l) = (I ..... k, s) one has 

Min (A) < 
V(k+l) Minv(k+l)(A) 

Let m be the first number s with these properties. 

t < k (recall, that A has zero diagonal) that 

aim ai,k+ 1 for i = I,Z, .... t 

hut 

at+l,rn> at+l,k+l 

Then we have for some 

(i) 

(z) 

Let g c Sym (n) be the transposition of m and k+l. Then the first t rows of 

gAg -I coincide with the first t rows of A (it follows from (I)) but the (t+l)-th 

row of gag "I is greater than the (t+l)-th row of A (this follows from (2)). There- 

fore A is not a maximal form. This is a contradiction. 

Z.Z. Proposition Z.I shows that to find a substitution g ~ Sym (n) such that gAg -l 

is the maximalforrn of A, oneneed not consider all g ~ Syrn(n), but only 

those for which the subset V(n) = g (i ..... n) is monotonic for A. 
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This can be done rather easily since we have to consider only those V(k) 

which are monotonic for Minv(k)(A ). 

More precisely, let A be a n X n symmetric (0, l)-matrix with zero 

diagonal and suppose that V(k) is monotonic for Minv(k)(A). Let us call 

V(k+l) = (i I ..... ik+l) an extension of V(k) if 

a) V(k) = (i I ..... ik) 

b) V(k+l) is monotonic for Ivlinv(k+l)(A ). 

Therefore we have to take all extensions of V(0) = ~, then all 

extensions of these extensions,and so forth,until we will get the end points, which 

are monotonic sets for A consisting of n elements. Every such set {il, ... ,in) 

(1 Z n 
determines the substitution g = il iz ...in) and (l,Z,...,n) is a monotonic 

sequence for gag -I. Using Proposition Z.Z one has only to chose the greatest 

-i 
matrix among the matrices gag described above. 

The algorithm for the construction of extensions of a given set will be 

described in Z. 4. 

Z.3. Let us now show how the description of this exhaustive search is interpreted 

in terms of Section Q. 

Let T(k) be the set of V(k) such that V(k) is monotonic for MinV(k)(A). 

Set T =~.~f(k). There is an edge from t ~ T(k) to s ~ T(k) if s = V(k+l) is 

an extension of t = V(k). Since for monotonic V(k+l) = (i I ..... ik+l) , the 

sequence V(k) = (i I ..... ik) is also monotonic, and the tree T is connected. It 

is clear that every monotonic sequence V(k) (for MinV(k)(A)) has at least one 

extension. Therefore every monotonic sequence for A is represented by an 

end point of T, and every end point represents a monotonic sequence for A. 

Z.4. Let us now describe the exhaustion function of our search, that is the 

algorithm for constructing extensions of sets. This part is repeated many 

times and therefore has to be as effective as possible. 
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Let V(k) = (i I ..... ik) be a monotonic sequence for Minv(k)(A). If 

V(k+l) = (il, . .. , ik, r) is an extension of V(k), then it follows from the definition 

of the monotonic sequence that 

( a i l  ' , . . . .  a .  ) = m a x  ( a i l ,  t . . . . .  a i  k ,  t ) r l k ,  r t¢ [1, n ] - V ( k )  

L e t  R = R ( V ( k ) )  b e  t h e  s e t  o f  a l l  r w h i c h  s a t i s f y  t h i s  c o n d i t i o n  ( t h e n  ( V ( k ) ,  r ) ,  

rc iR, 

R 0 

are all extensions of V(k)). 

To describe R we use the sets W. = {j ~ [l,n] - V(k) la. 
i 13 

a n d  

Rs =I Rs-I 

Rs_ I 

: {1,  z . . . . .  n }  - V ( k )  

a / ] W  = 9  
s-i i 

s 

1 s 
s s 

= i}. Put 

P r o p o s i t i o n .  R i s  t h e  s e t  o f  j e [1, n ]  - V ( k )  s u c h  t h a t  
s 

. . . . . .  a .  . = m a x  (a .  t '  t ) a i l ,  J 1 , J  " ' ' ' a i  , S t~ [i, n]-V(k) 11' s 

The proof is straightforward (cf. also [Arl]). 

Using this proposition one can find R by only taking intersections of 

computer words. 

3. For some graphs the above procedure is ineffective. The graphs 

whose automorphismgroupsarelargewillhaveverylarge tree T. Another case 

is the case of correct graphs. We shall show below how to deal with a large 

automorphism group (cf., T5. Z). 

Here we have two problems. The first one is how to find automorphisms, 

and the second one is how to use them. The following two assertions answer 

these questions. They are evident. 

3.1. Proposition. Suppose that Minv(n)(A ) = Min~(n) (A), V(n) ..... (i I, in) 
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~(n) : (Jl ..... jn ) . Then the permutation 

g = \Jl '  ' i n  

is an automorphism of A. 

3.Z. Proposition. Let g ~ Aut A and V(k) : (i I ..... i k) be such that V(k) is 

monotonic for MinV(k)(i ) and gij = i.j for j = 1 ..... k. Let T(U), UC[I,r{], 

be the subtree of the tree T from Z. 3, consisting of ~C [i, n] such that 

{U, jl ..... jt }. Then for every j ( [l,n] - V(k) and every V(n) T({V(k), j}) 

one has Minv(n)(A ) = Mingv(n)(A ) and gV(n)E T({V(k),gj}). 

3.3. To use the preceeding assertions, we use the "depth first search" over 

the tree T described in Z.3. Allsequences V(n)= (i I ..... in} , which are rnonotonic 

(1 n 1. 
i I" 

fo r  A, a re  s t o r e d t o g e t h e r w i t h t h e  m a t r i c e s  g A g - l =  M i n v ( n ) ( A ) , w h e r e  g= 
I n 

~Vhenanewmonoton$c sequence V(n) is cons t ruc ted ,we compare  the co r respond ing  

matrix gag -I with the already stored matrices. If it coincides with one of them, 

then we get (by Proposition 3.17 an automorphism. 

For every V(k) belonging to a sequence V(0) : PCv(1) C... of extensions, 

and for every g ~ Aut A found by the above rnethod and such that 

gIV(k) = i, let us store the orbits of g in the set of extensions of V(k). Whena 

new such g is found, the intersecting orbits are joined. 

Now Proposition 3.Z says that in the search we can take only one represen- 

tative of the extensions of V(k) (compare TS.Z). 

3.4. The method described in 3.3 is heuristic (cf. Qg. ll). It is useful when 

the group Aut A is large. If it is small (e.g., Aut A = {i}) then all our efforts 

(and storage space) will be useless. 

3.5. An example of a situation where 3.3 essentially reduces our search, 

is the case A = T (the complete graph)• In this case the heuristic of 3.3 
n 

requires the construction of only n end points of T (but the method of Z.3 
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requires the construction of n: end points of T since every sequence 

g (i ..... n), g ~ Sym (n) is monotonic for A). 

3.6. However in the case of correct graphs (cf., J6) the heuristic of 3.3 may 

fail for reasons described in 3.4, and the size of the search would be of order 

(an--)!, which is still very large for graphs of G4.7, for example. 

4. The algorithm described in this Section {with heuristic 3.3) was 

used to canonize the graphs constructed by the algorithm of the next Section. 

It also found the orbits of the automorphism group. 

For the graph ~ 7 from the Z6-family, the programbasedonthisalgorithm 

constructed 40 end points of T and for ## 9 from the 26 -family it constructed 756 

end points of T. Note that Nut A is trivial in the second case. 



T. AN ALGORITHM OF CONSTRUCTION OF STRONGLY REGULAR GRAPHS. 

1 Z 
A strongly regular graph with parameters n, nl, all, all is a graph with 

n vertices, such that 

a) 

b) 

c) 

any vertex is incident to nl, 0 < n I < n-l, vertices, 

1 
any pair of incident vertices is simultaneously incident to all different vertices, 

Z 
any pair of non-incident vertices is simultaneously incident to all different 

vertices. 

Clearly the adjacency matrix A = (a..) of a strongly regular graph is a 
13 

basic element of a three-dimensional cell (cf. KZ0). So it is a symmetric n X n- 

matrix w i t h  zero diagonal and with ele~nents 0 and I, and it satisfies the following 

condition: 

If s i = (all ..... ain) is the i-th row of A and if Isl denotes the number of 

ones in (O,l)-vector s, then 

Isil : n I for all i 

Ii if = 1 
aij 1 

I siNsjl : (*) 
if a.. 0 

~ii M 

Below we describe the algorithm which constructs for a given set n, nl, 

l Z 
all, all of parameters a set of strongly regular graphs with these parameters 

such that any strongly regular graph with these parameters is isomorphic to at 

least one constructed graph. Interesting features of our algorithm are the use of 

partial canonization, cf. Z.3 , 2.5, 2.6, Z. 8, and two forced variants (cf. Z. 4, 

3.4). 

i. 

fix n. 

To describe this algorithm we have to introduce some notions. Let us 

Let B = (bij) be a n ×n (0,1)-matrix with zero diagonal. Let D = 

{il~.:.,it} be a subset of [l,n]. 

Two numbers r, q ~ [i, n]\D are said to be D-equivalent if 
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b. = b. for all i ~ D 
~q ir 

(clearly this is an equivalence relation). 

1 . 1 .  D e f i n i t i o n .  S e t  DO = D a n d  l e t  D . ,  i = 1, Z , . . . , r n ,  
1 

b e  c l a s s e s  of  D -  

equivalence numbered such that (here inf stands for infimurn) 

The D.'s are called D-sets. 
I 

i > j ~ i n f  D. > i n f  D .  
1 j 

1. Z. L e t  B ,  D,  D.  b e  a s  a b o v e .  L e t  s = s (B )  
1 q q 

q ~ D a n d  j e [1, m ]  s e t  

be the q-th row of B. For 

x . = x . ( B ) =  2; b q d .  
qJ qJ d~ D.  

J 

(This is the number of ones in s which occupy the positions 
q 

1.3. Proposition. Let p = inf D . 
1 

a) For every q ~ D. there exists g c Syrn (Di) such that 
1 

Xpj(g-iBg) = Xqj(B) for all j ~ [17n]. 

(q,s), s~ D.) 
J 

b) There exists an h ~ II Syrn(Di-P) such that for h-IBh = (Ca~3) the following 
i>l 

holds: Cps = I, s ~ Dk, implies c . = I for all j < s, j ~ p, j ~ D k- 
PJ 

These assertions are evident, and show that, when t rows (i I ..... it) of 

B are fixed, we still have some freedom to move the remaining rows. They also show 

how to use this freedom. These assertions, and also their corollary, are used in 

2.3, Z.5, Z.6. 

An easy corollary of i. 3a) is 

I. 4. Corollary. Under assumptions and notations of I. 3 there exists g ~ Sym (Di) 

such that the vector 

(Xpl(gBg -I) ..... Xpt(gBg-l)) 
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is lexicographically greater than or equal to any vector 

( X q , l ( g B g - 1 )  . . . . .  Xq,  t ( g B g - 1 ) ) ,  q e D.1. 

1 . 5 .  N o w  n o t e  t h a t  t h e  n u m b e r  b ., r e D ,  j e D , d e p e n d s  o n l y  o n  r a n d  i . 
r j  t 

L e t  a s  d e n o t e  i t  b y  b . ( r ) .  
1 

= . , . .  ), ( r e c a l l t h a t  D =  (i 1 . . . . .  i t ) ) ,  t h e n  S e c o n d l y ,  i f  w e  s e t  Sk,  D ( b k ,  11 " ' b k ,  i t 

the number 

I s N D l r~D, r, D s j, , 

does not depend on j ~ D.~ . Let us denote it by ci(r). 

Also let c i be the common value of I sj ,DI' j ~ DI " 

1.6. Proposition. If B is an adjacency matrix of a strongly regular graph,thenthe 

numbers x .(B), q e D., satisfy the following equations 
qj i 

= n I - c i j>O Xqj 

a - c i ( r )  i f  b i ( r  ) = 1 

J > 0  b j ( r ) X q j  

a l l  c i ( r  ) i f  b i ( r )  0 

(These relations are direct consequences of (*)). 

Z. Now we are able to describe the work of our algorithm at a fixed vertex 

(i.e., to describe its function of an exhaustion). 

There are two somewhat different procedures depending on the situation. In 

all cases at the level t, the data inherited from the level (t-l) contain a subset 

D(t) = {i I ..... it} of [l,n], a n >n (0,1)-matrix 13 t and also solne additional 

information to be described later (Sd, t,a list of positions fixed (cf. Z. 4) at the 

level t-l). 

Z.I. For this pair D(t), B t construct D(t)-sets DI, .... Dm numbered as in i.I. If 
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ID i] = i for all i = i ..... m, the second procedure is applied. 

in 3. 

Z.Z. For every i = I, Z ..... m, find all solutions of the system 

It is described 

Z xj = n I - c i 

t'i 
1 

a - ci(r) 

Z = j>_l bj(r)xj 

Lall ci(r) 

if bi(r)= I 

if b.(r)= 0 . 
1 

The solutions are vectors of length m. Let us denote the set of these solutions by 

S.. The elements of S. are ordered with respect to dictionary order. 
l i 

The search for solutions of the above systems is done by the evident exhaus- 

rive search. If the procedure "Fixation" {cf. g.4) has already determined (that 

is on preceeding levels) the values of some x., those values are not computed 
J 

anew but substituted in the above systems. ("Fixation" reduces our search, 

but does not involve an exhaustive search. Therefore, "Fixation" is a forced 

variant). 

If for at least one i the above system has no solutions, return to the level 

t - 1 and apply Z. 6. 

Z.3. Now fix in turn all s < t and all i E [l,m]. Let D{ ..... D'a be D(s)-sets 

constructed for B. Clearly D. is contained in some D[. If none of i i 
i j s+l ~'''' t 

belongs to D~, pass to Z.4. Otherwise take the largest among is+l, . ..,i t 

which belongs to D[, andcallit r. For this r, computethe solution of the system 
3 

of Z.Z which is realized by r-th row of B t. Let it be the vector u (of length a). 

For each solution v ~ Si, compute the solution of the system Z.Z (considered 

for s) to which it corresponds. Denote it by v (the computation is easily perform- 

ed for a given matrix B). 

Delete from Si, those v for which v >u. If the resulting S. is empty, 
1 
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return to the level t - 1 (i. e., put t : = t - 1 and apply Z. 6). 

Z.4. "Fixation" (This is an example of a forced variant, cf.,Q2.10). If for some 

i, j c [l,m] the j-th component of all solutions from S. is 0, then we 
i 

can fill all positions (p,q) ~ D. X D. of ]3 by zeros, and we do this. 
i j 

A n a l o g o u s l y ,  if f o r  s o m e  i ,  j ~ [1, m ] ,  i ~: j ( r e s p . ,  f o r  s o m e  j ~ [1, m ] )  t h e  

j - t h  c o m p o n e n t  of a l l  v e c t o r s  f r o m  S. ( r e s p . ,  S.)  i s  I DiI ( r e s p . ,  l DJ-1t, w e  
1 j 

c a n  f i l l  a l l  p o s i t i o n s  of  ( p , q )  ~ Dj × D i ( r e s p . ,  ( p , q )  e D. × D. ,  p ]~ q) b y  o n e s ,  
J J 

and we do this. 

Z.4.1. Note, that the group Sym D 1 × ... XSym Dm commutes with these fixed 

pieces. 

Z.5. Now take the smallest d ~ [l,m] such that ISdl < ISil for all i ~ [l,m] 

and put it+ I : = inf D d, Sd, t : = Sd" 

Z.6. Take the largest vector, say v, from Sd, t and put Sd, t : = Sd, t " v, 

D(t+l) = {i I ..... it+l}. Place the elements in the It+l-th row of B t (theywill li~ o~atside 

D) in the following manner. Let D i = {Ji, l ..... Ji, IDi I} (listed in increasing 

order), v = (v I ..... vt). If i ~= d, put 

bit+l, J 

L0 for j Ji, v+l ..... Ji, IDil 
1 

If i -- d put (recall Jd, l = it+l) 

b. . =Ii for J = Jd, 2 ..... Jd, vd+l 

it+ I' J 

for j it+l' Jd, vd+Z ..... Jd, I Ddl 

Then insert the corresponding it+l-th column (so that B is symmetric). 

Also insert the entries in all positions which were determined in Z. 4 and store the 



information about these positions. 

Z.7, If t + 1 = n, print Bt+ l 

set t : = t - 1 and apply Z.3. 

t : = t + i and apply Z.l. 
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Call the resulting matrix ]3 
t+l" 

(which is the matrix of a strongly regular graph), 

If t + 1 < n, go to the level t + I, i.e., set 

Z.8. Remark. We have used several search reductions (in 2. 3, Z. 5, 2.6). Using 

them we construct a smaller number of graphs. However, at least one 

graph in each isomorphism class will be constructed. This is guaranteed by 1.4 

(for g.3), 1.3a) (for Z.5), 1.3b) (for 2.6). (cf. also Q5. Z where this situation 

is described in a more detached way). 

3. "Break-down". Now suppose that in the situation of Z.l one has I D[I = 1 

for i = 1 ..... rn (then m = n - IDI)- Let t O be the first level at which it 

occurred. In this case the solutions of Z. 2 are (0.1)-vectors,and the set of the 

solutions for level t + 1 is easily obtained from the set of the solutions for level t. 

Indeed, the number of variables decreases and the number of equations increases. 

Therefore ,it is worth to store the set of solutions. The list of solutions is 

organized as follows: 

All solutions (at level tO) 

admissible forbidden forbidden forbidden 

at the level t at the level t at the level t-i at the level t-Z .... 

I t I ..... l .... I 

3.1. If t = t O , dothe same as inZ. Z andZ.3. If t >t 0, move all solutions 

which were admissible at the level t - l but contradict the i -th row, to the 
t 

list: forbidden at the level t. 

3. g, If the list of admissible solutions at the level t is empty, return to the 

level t - i. 

3.3. The same as g.4. 

3.4. For each solution from the list (if t > t O use the list: admissible at the 

level t-l) check whether it contradicts the fixations made in 3. 3 (i.e., we check 
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to some extent the list of solutions for compatibility), if there are no contradictions 

pass to 3.5. 

If there are contradictions move contradicting solutions to the list of 

solutions forbidden at the level t and apply again 3.Z. (In this way one again 

gets a "forced variant". ) 

3.5. If the list of admissible solutions at the level t is empty and t > tO, set 

t : = t - i and pass to 3.6. 

If the list of admissible solutions at the level t is empty and t = t O , set 

t : = t - i and return to Z.6. 

3.6. If the list of admissible solutions at the level t is not empty, take for the 

it+ 1 the least number it+ 1 ~ D such that the number of solutions for the 

corresponding row is minimal; take from the list of admissible at the level t 

solutions the largest one corresponding to it+l-th row; move it to the list of 

forbidden at level t + i, and insert the corresponding column and row in I~ t. 

Call the resulting matrix Bt+l, set t : = t + I and return to 3.1. 

4. Let us now describe the tree of our exhaustive search. The vertices of 

level t are pairs (D{t),Bt) consisting (cf. Z) of a subset D(t) = {i I .... ,i t } of 

if, n] and a (n×n) (0.1)-matrix with zero diagonal whose rows with numbers 

i I .... ,i t satisfy relations (*). (But matrix B t can contain ones outside the rows 

and columns with the numbers i I ..... i t. ) There is an edge from (D(t), Bt) to 

(D(t+l), Bt+l) if the latter pair is constructed from the former one with the help 

of the rules described in 2 5, Z.6 and 3.6. 

The search is the "depth first search". 

5. Forced variants are "Fixation" (cf., Z.4) and "Fixation-Deletion" 

(ef.,3.4). They are helpful for constructing part of the matrix B without branching. 

6. The choice of it+ 1 (cf. Z. 5) is heuristic We do not know and did not 

know whether it reduces the search or not. 

However, some experiments were done which suggest that it reduces the 
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search. 

In these experiments the choice of it+ 1 

the choice it+ 1 : = t + 1 (natural} were compared. 

In one case the coefficients of branching were 

according to Z.5 (heuristic) and 

In another case the sizes of the trees hanging at some (not too far) advanced 

vertex of the exhaustion tree were compared. This vertex was fixed and then the 

remaining numbers were exhausted in the natural and heuristic order. In all 

these cases the heuristic approach generated trees which were several times 

smaller than those generated by the natural approach. 

7. Possible modifications. 

7.1. It is possible to use the results of "Fixation H (cf., Z.4) also before "Break- 

down" in the same manner as they were used in 3.4. We did not experiment 

with this possibility. 

7.2. It is also possible to use the canonization algorithm not only at the end points 

of our tree, but at every vertex. However, it is not clear whether it will make 

the algorithm work faster. Indeed, the canonization algorithm is quite bulky 

and we already have at least partial canonization (cf., 2.3, 2.5, Z.6, 2.8). There 

1 = 7 ,  2 = 6 .  were experiments with this approach in the case n = 29, n I = 14, all all 

But the tree in this case still was too large to be handled by computer (cf. [ArZ]). 

On the other hand sometimes (when one has a lot of computer time) only the 

storage space matters. 

8. About realizations. Several programs, based on different modifications 

of the above algorithm were written. One of them was written for a computer 

M-Z0 and all othersforacomputerlCL, System 4-70. The results coincided. 

level 3 4 5 6 7 8 . . . 

heuristical 3 5 Z0 25 i 1 ... 

natural 3 Z0 25 5 i 1 . .. 



U. TABLES OF STRONGLY REGULAR GRAPHS WITH n VERTICES~ i0 < n < 28 

All strongly regular graphs constructed by the algorithm described in Section T 

are given in the tables below. Also some information on these graphs is given. 

The information about the graphs is arranged as follows. The upper 

line is 

n = ~ n I = ~ # 

which shows the number of vertices of the graph ("n")~ its degree ("nl") and its 

number among the graphs with the same n and n I. 

Below this line the connection table of the corresponding graph is given. The 

column 

"VER" 

gives the numeration of the vertices of the graph. 

The column 

"TYPE" 

indicates the number of the canonical form of the neighbour graph of the corresponding 

vertex. 

Under the title 

"NEIGHBOURS" 

the canonical numeration of the vertices of the neighbour graph of the corresponding 

vertex is given. 

Below the connection table and after the word 

"ORBITS" 

the nontrivial orbits of the automorphism group of the corresponding graph are given. 

In the case when this group acts transitively, it is written: 

"ORBITS : TRANSITIVE" 

In the case when this group is trivial, it is written: 

ORBITS : n POINTS" 

(where n is the number of vertices of the given graph). 

The next line is 

"NUMBER OF DIFFERENT NEIGHBOUR TYPES = b" 

and this means that our graph has b non-isomorphic neighbour graphs. 
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In the cases when the pictures of the neighbour graphs are not too complicated~ 

they are given under the heading 

"NEIGHBOUR GRAPH" 

The 15 graphs with n = 25, n I = 12 are called the 25-family, and the i0 graphs 

with n = 26, n I = I0 are called the 26-family. For these families there are tables 

"MULTIPLICITY OF THE NEIGHBOUR TYPES IN n-FAMILY" 

The (i~j)-entry of these tables is the multiplicity of the i-th type of the 

neighbour graphs in the j-th strongly regular graph. 

More heuristieal information on the 25- and 26-families is discussed in the 

next Section. 

All graphs with n - 28~ n I = 12 are known (cf° [Ch. 2]). All graphs of the 

25- and 26-families were independently constructed by A. J. L. Paulus [Pa I] 

under the guidance of J. J. Seidel (cf. [Se5]). However, his algorithm does not guaran- 

tee that the constructed families exhaust all strongly regular graphs with given para- 

meters. Our algorithm as it was already indicated constructs complete families. Our 

results were announced in [Ro I]~ [Ro 2]~ JAr 2]. 

All other graphs in our tables have transitive automorphism groups. 
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n = 25~ n I = 8, #i 

VER TYPE NEIGHBOURS 

1 i 2 3 4 5 6 7 8 
2 1 i 3 4 5 i0 ii 12 
3 1 1 2 4 5 14 Ib 16 
4 i 1 2 3 5 18 19 20 
5 I 1 2 3 4 22 23 24 
6 1 i 7 8 9 i0 14 18 
7 i i 6 8 9 ii 15 19 
8 i i 6 7 9 12 16 20 
9 I i 6 7 8 13 17 21 

i0 i 2 II 12 13 6 14 18 
ii i 2 i0 12 13 7 15 19 
12 i 2 i0 ii 13 8 16 20 
13 I 2 i0 Ii 12 9 17 21 
14 i 3 15 16 17 6 i0 18 
15 i 3 14 16 17 7 Ii 19 
16 I 3 14 15 17 8 12 20 
17 i 3 14 15 16 9 13 21 
18 I 4 19 20 21 6 i0 14 
19 I 4 18 20 21 7 ii 15 
20 i 4 18 19 21 8 12 16 
21 i 4 18 19 20 9 13 17 
22 i 5 23 24 25 6 i0 14 
23 i 5 22 24 25 7 ii 15 
24 i 5 22 23 25 8 12 16 
25 i 5 22 23 24 9 13 17 

9 
13 
17 
21 
25 
22 
23 
24 
25 
22 
23 
24 
25 
22 
23 
24 
25 
22 
23 
24 
25 
18 
19 
20 
21 

ORBITS • TRANSITIVE 

NUMBER OF DIFFERENT NEIGHBOUR TYPES = i 

NEIGHBOUR GRAPH 
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n = 27, n I = i0~ #I 

VER TYPE NEIGIIBOURS 

I i 2 3 4 5 6 7 8 9 i0 ii 
2 i i 3 12 19 13 18 14 17 15 16 
3 i i 2 20 27 21 26 22 25 23 24 
4 i i 5 12 23 13 22 14 21 15 20 
5 i i 4 16 27 17 26 18 25 19 24 
6 i i 7 12 25 13 24 16 21 17 20 
7 i I 6 14 27 15 26 18 23 19 22 
8 i I 9 12 26 14 24 16 22 18 20 
9 I I 8 13 27 15 25 17 23 19 21 

i0 i I ii 12 27 15 24 17 22 18 21 
ii I i I0 13 26 14 25 16 23 19 20 
12 I 2 19 4 23 6 25 8 26 I0 27 
13 i 2 18 4 22 6 24 9 27 ii 26 
14 i 2 17 4 21 7 27 8 24 II 25 
15 i 2 16 4 20 7 26 9 25 I0 24 
16 i 2 15 5 27 6 21 8 22 II 23 
17 i 2 14 5 26 6 20 9 23 i0 22 
18 I 2 13 5 25 7 23 8 20 i0 21 
19 i 2 12 5 24 7 22 9 21 ii 20 
20 i 3 27 4 15 6 17 8 18 ii 19 
21 i 3 26 4 14 6 16 9 19 i0 18 
22 I 3 25 4 13 7 19 8 16 I0 17 
23 i 3 24 4 12 7 18 9 17 ii 16 
24 I 3 23 5 19 6 13 8 14 i0 15 
25 I 3 22 5 18 6 12 9 15 ii 14 
26 1 3 21 5 17 7 15 8 12 ii 13 
27 I 3 20 5 16 7 14 9 13 i0 12 

ORBITS : TRANSITIVE 

NUMBER OF DIFFERENT NEIGHBOUR TYPES = i 

NE IGHBOUR GRAPH 

i 2 3 4 5 6 7 8 9 I0 
J i J J ) l J, ,, L 
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V. SOME PROPERTIES OF Z5- AND Z6- FAMILIES. 

Below we expose some results of the computer-aided analysis of the graphs of 

the Z5- and Z6-families. The numeration is that of the preceeding Section. 

Results of this Section partially overlap with results of [Sh 4], [Sh 3], 

[Sh 5], [Pa I], [Se 5]. Our results were announced in [Ro I], [Ar Z]. 

i. 26-family and Steiner triple systems on 13 points. 

There exist (cf. , [Ha 3]) g non-isomorphic Steiner triple systems on 13 

points. The corresponding graphs (whose vertices are triples) are ~= 7 (corres- 

ponding to the cyclic Steiner triple system) and q# 3 in Z6-family. 

In [Sh 4] the authors took two non-coinciding representations of the cyclic 

Steiner triple system and derived from them 5 graphs (=~ I, =~ 2, ~ 6, 4~ 7, ~ 8) 

of the Z6-family and 7 graphs (by descent, cf., 3 below) of the Z5-family. The table 

in subsection 3 below shows that if the authors of the cited paper had not been 

so unlucky, they could have found using descent-ascent all the graphs of the ZS- 

and Z6-families. However,it is not clear how they would be able to establish 

that they found all graphs with these parameters. 

2. Complement in the gS-family. 

If A is the adjacency matrix of a strongly regular graph belonging to the 

Z5 -family then 

7~ = TZ5 - A 

Below the number of the class of isomorphism of A is is also one. 

given as a function of the number of A 

of A I Z 3 4 5 6 7 g 9 i0 ii IZ 13 14 

of A 13 7 4 3 8 9 Z 5 6 IZ 14 I0 1 ii 

3. Descent from the 26 -family to the g5-family. 

Let F be a strongly regular graph with 26 vertices, 

15 

15 

x ¢  V(1-) .  L e t  V 1 
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(resp. 

to x. 

VZ) be the set of vertices of F which are incident (resp. non-incident) 

Let F be the graph obtained in the following manner: 
X 

a) v(r x) = v~r) - ~; 

b) the vertices of V I (res p. ,of VZ) are incident in l~x if and only if they 

are incident in F; 

c) the vertices of V 1 are incident in F 
x 

were not incident in r. 

to vertices of V Z if and only if they 

It is easily checked that F is strongly regular and belongs to the Z5-family 
x 

(cf., e . g . ,  [Sh 4]). 

In the table below in the position (m, n) stands the multiplicity of the m-th 

graph of the ZS-family as a graph F of the n-th graph of the Z6-family. 
x 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: 1 : Z : 3 : 4 : 5 : 6 : 7 : 8 : 9 : ]0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 3 3 3 3 3 

Z 3 3 3 3 3 

3 6 6 6 6 6 

4 6 6 6 6 6 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 13 13 
6 1 l 1 1 1 

7 3 3 3 3 3 
8 13 13 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9 1 i 1 1 l 

i0 IZ IZ 
ii 1 1 

iZ 12 iZ 

13 3 3 3 3 3 

14 1 1 
15 Z6 

3.1. Remark. The graphs of the g6-family split into 4 groups: {1, Z}, 

{3, 4, 5, 9,10}, {6,7}, {8} and the columns of the above table are the same within 

one group. The Z5-family splits accordingly into groups: {i0, ii, IZ, 14}, 

{1, Z,3,4,6,7,9,13},  {5,8},  {15}. 
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It is interesting to compare this partition with the tables of the multiplicity 

of the neighbor types in the corresponding families and also with tables 4. Z. l, 

4.3.1. 

4. Coincidin~ .r ows. 

4.1. The matrices A constructed by the algorithm of Section T may be very 

close to each other. The i-th column of the table below contains the number of the 

matrices A, constructed by the algorithm of Section T, such that A and the 

matrix B constructed next to A have i coinciding rows (i.e., for i values 

of q one has sq(A) = Sq(B), where s (C) is q-th row of C). The first row of 
q 

the table shows i, the rows marked Z5, Z6 correspond to the Z5- and Z6-family. 

NUMBER OF CONSECUTIVE GRAPHS WITH i COINCIDING ROWS 

i 0 1 Z 3 4 5 6 7 8 9 I0 ii 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

25 0 0 3 Z0 300 900 900 1500 750 700 900 500 

Z6 0 0 1 5 Z5 i00 350 Z80 450 260 300 400 

Table continued 

i 12 13 14 15 16 17 18 19 Z0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Z5 Z50 0 0 1750 0 1550 0 0 0 

26 70 IZ0 0 0 800 0 68 0 0 

4. Z. The 26-family. 

In 4.1 we pointed out thatthe matrices successively constructed by the algorithm 

may have many common rows. The two tables belowpoint outwhich isomorphism 

classes are close in that sense. The number "i" which stands at the intersection 

of the i-th column and the j-th row of Table 4.2.1 (resp. 4.2.2) indicates 

that among the matrices constructed bythe algorithmthere is a pair of successive 

ones which has 18 (resp. 16) common rows and such that the first matrix of the 

pair belongs to the i-th isomorphism class and the second one to the j-th one. 



189 

4. Z.l, Table (18 common rows in the Z6-family). 

1 Z 3 45 67 8 9 i0 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

1 1 

Z 1 

3 
4 l 1 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

5 i i i 1 1 

6 1 1 

7 

8 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

9 i I I I 

i0 1 i i 

This induces the partition {l,Z}, {3}, {4,5,6,9,10}, {7}, {8} of the graphs of 

the 26-family. Compare with Remark 3. i above and with the remark after Table 

4.3.1 below. 

4.2.2. Table (16 common rows in the Z6-family). 

1 2 3 4 5 6 7 8 9 1 0  
. . . . . . . . . . . . . . . . . . . . . . . . . .  

i 11 

Z l 

3 1 i 
4 1 1 1 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

5 i i 1 1 1 1 

6 i ] i 

7 
8 
. . . . . . . . . . . . . . . . . . . . . . . . . .  

9 1 l 1 1 

i0 I 1 1 

4.2.3. If the n><n-rnatrices A and B have m common rows, let us denote by 

A B and B A the (n-m) × (n-m)-matrices obtained from A and B by deleting 

m common rows and columns. For the Z6-family and for m = 18 or 16, it turns 

out that A B and B A are (adjacency) matrices of isomorphic graphs. 

Therefore the operation of transition from A to B can be described in 

the following manner: 

Remove from I~(A) some subgraDh F 1 spanned by (n-m) vertices, and replace 
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it by an isomorphic one. Call this operation surgery. 

It turns out that for m = 18 graphs A B and 

class of isomorphism of the graph given below: 
i 4 

0 1 i i i 0 0 0 

i 0 i 0 0 i 0 0 

1 i 0 0 0 i 0 0 

i 0 0 0 0 i i i 

1 0 0 0 0 1 1 i 

0 i i 1 i 0 0 0 

0 0 0 i i 0 0 i 

0 0 0 I i 0 i 0 

B A always belong to the 

1 Z 

1 

Z 

3 i 

4 1 1 

5 i 

4.2.1, 4.2.2. 

in the Z5-family). 

3 4 5 6 7 8 9 I0 ii IZ 13 

1 i 

i i i I 

i i i 

i I i I i 1 1 i 

i i 

14 15 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 i i 

7 1 1 I 

8 i 1 i i 

9 1 

i0 1 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

arranged analogously to Tables 

4.3.1. Table (17 common rows 

A program was written which found all (up to isomorphism) strongly regular 

completions of this graph to strongly regular graphs with 26 vertices. All com- 

pletions belong to the isomorphism classes I,Z,4,5,6, 9,10. This gives rise to the 

hypothesis that only these isomorphism classes have representatives which have 

18 common rows. This hypothesis was then checked,and it turned out that it is 

true. 

When m = 16 by random search four isomorphism classes of matrices A B 

were found. We do not give them here. 

4.3. The 25-family. 

The Tables 4.3.1 and 4.3.2, given below have the same significance and are 
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(Table continued) 1 Z 3 4 5 6 7 8 9 I0 1 IZ 13 14 15 

ii 

ig i i 

13 i I 

14 

15 

This table induces the part i t ion {1, Z, 3, 4, 5, 6, 7, 8, 9, 10, tZ, 13}, {tl}, {14}, {15}. 

Compare with Remark 3.1 and with the remark after the Table 4.2. i, 

4.3.2. Table (15 common rows in the ZS-family). 

I Z 3 4 5 6 7 8 9 I0 ii 

i I 1 i 

Z i i I i i 

3 i i I 1 1 

4 1 i i i i i i i 1 

I i i 

IZ 13 14 15 

I 

1 i 

i 5 

6 1 1 1 i 

7 1 i I 1 i 

8 i i I i 1 

9 i 1 1 i 

i0 i 1 I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ii 
IZ 1 l 1 

13 1 i 1 I 

14 

15 

4.3.3. Note that table 4.3. Z is not symmetric; this means that our material is 

insufficiently representative. 

In all cases when (for m = 15 or 17) the matrices A B and B A were 

constructed,they proved to be isomorphic. 

The matrices A B, constructed for m = 17, are isomorphic to the matrix 

given in 4. Z. 3. Possibly this phenomenon is connected with the operation of 

descent. 

5. Coincidin~ minors 

Among the matrices constructed by the algorithm there were pairs A 
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and B which had large common minors. 

Systematic research has not yet been performed in that direction. How- 

ever, somematricesofthe 25-familyhave common minors of order 19. Such pairs 

are also contained among canonical forms given in the preceding Section. Below 

for matrices with numbers n,m from the preceding Section, those 19 vertices 

are pointed out which span coinciding minors. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~= n : ~= m : numbers of vertices spanning (19 X 19) - minor 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Z 3 1+19 

4 5 i+19 
6 7 i+19 
6 8 i + 14, 16, 17, 18, Z4, Z5 
6 9 1 + 14, 16, 17, 18, 2Z, Z3 
7 8 1 + 14, 16, 17, 18, 2Z, 23 
7 9 1 + 14, 16, 17, 18, Z0, gl 
8 9 i÷ 19. 

6. More information on the 25- and 26-families can be found in [Pa I, Se 5, 

Sh 4]. For example, the clique structure of these graphs and the classes of 

Seidel equivalence (switching) are found there. 

Also note that the tables of the preceding Section are, in principle, 

sufficient to answer some questions, such as, what is the automorphism group of 

the graphs, etc. 



AA. A GRAPHICAL REGULAR REPRESENTATION OF Sym(n). 

The next three sections can be considered as examples of application of the 

stabilization procedures of Sections C and M. On the other hand, the questions 

discussed in Sections AA, AB~ AC have attracted the attention of several authors 

(e.g., [Sa I], [Wa 2], [Wa 3], jim i], [Im 2]). 

i. Let G be a finite group. A graph F is said to be a graphical regular 

representation of G~ if G acts simply transitively on vertices of ~ and 

G ~ Aut F. 

Proposition. If r is a graph and ~.(F) ~ Z[G] (isomorphism of cellular algebras) 

then r is a graphical regular representation of G. 

Proof. By C 8.2 we have Aut F = Aut o~.(r). Since Iv(F) l = IGI, 

to prove is that Aut F ~ G. But it is well-known that Aut ZIG] ~ G 

2. Let ~ = ZIG] be the group algebra of G (cf., G i). The operators Rg, of 

the right multiplication by g ~ G, form a standard basis of 0~,. We shall 

identify g and R . 
g 

3. Below we use the stabilization procedure of Sections C and M to check that 

~(~) ~ Z[Sym(n)] for an explicitly given graph p. Then the above proposition will 

the only thing 

(cf.~ [Ha 2]). 

give us the following 

Theorem. There exists a simple graph I ~ 

which has n.', n > 3, vertices~ and 

to Sym(n) 

(without loops, multiple or directed edges) 

whose automorphism group is isomorphic 

and acts transitively on its vertices. 

Proof. Set Pl = (I~2,3,4), P2 = (1,2,3), p3 = (1,4)~ pi = (i,i+l), i ~ 4, 

r: pl ÷ pl I + p2 ÷ p l +q l 3 pi 

According to our convention (Rg < > g)~ this is an n~ × n~-matrix. Since 
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the coefficients of the elements of G in ~ are 0 or i, 

-I 
Since F contains g together with g, it is symmetric. 

Proposition i) to show that 

0L(F) = ZIG] 

it is a (0,1)-matrix. 

So it remains (by 

Consider r 2 One has 

1 ~2 = (n - 2) • I + 2 • (I~3~2~4) + (I,2~3~4) + 2 • (I,4~2~3) + (i~4~3~2) + (1,2~4~3) 

+ (I~3~4~2) + 2 • (I~2,3) + 2 • (i~3~2) + (2~3~4) + (2,4~3) + 2 . (I~3)(2~4) 

+ 2 . (3~4) + 2 • (1,4) + (terms~ containing 5~6, ..., n). 

The sun~ands of ~ which appear in ~2 P2 1 are P = P2 + + P3 (with 

-I 
coefficient 2) and b = Pl + Pl (with coefficient i). By definition of the 

product (Xo X, cf.~ C 4.2), we have p, b, v = i=4 Pi¢ ~(I~)" 

2 
Now consider p . One has 

2 
p = 3 • I + (I~2,3) + (I~3~2) + (I~2~3~4) + (i~4~3~2) + (I~3~2~4) + (I~4,2~3). 

-i 2 
Since P2 + P2 and P3 enter in p with different coefficients and since 

2 -i 
p ~ ~,(F)~ we have P2 + P2 ' P3 e 0~(F). 

p3(p 2 + p~l) (1,4~2,3) + (I~4~3~2). Now 

-I 
only (I~4,3~2) = Pl enters in 

It is easy to verify that Pl ~ P3 

d (3~4) e 01,(~). Consider 

~ we have 

generate 

Since of these two substitutions 

-I 
Pl ~ O~(F)~ whence Pl¢ O~(F). 

Sym(n) acting on [1,2,3~4]. Therefore, 

d(~ii- 4 pi ) d (3,5) + i=5 Pi 

It follows that (3~5) ~ ~-(I~). Therefore~ (4~5) ~ O1-(I~). 

~n-i 
Suppose now that a = (q,q + I) ~ g¢~(l ~) and v = q+l Pi e ~(I ~). Then 

~-I 
a v a = (q~q + 2) + +2 Pi 

This is the inductive step which concludes our proof. Namely, it shows that 

Sym(n) c g~L(l~). 



H = SLn+I(Fq). 

Theorem. Suppose that p > 5. Then there exists a simple graph F such that 

Aut r ~ H~ IF[ = IHI. 

3. For 

Remark. This assertion and its proof can be generalized to rational 

points over ff of semi-simple algebraic groups defined and split over 
q 

[Bo 1]). 

1 m (cf.~ 
q 

set 

2. To prove the theorem we shall construct~ as in the preceding section a graph 

such that ~(F) = Z[H]. Also, as in the preceding section~ we shall write the 

elements of the group ring instead of the operators of right multiplication. Let 

us introduce some notations. 

~Oij 

I 
I 

A (a 

(A) = 

m 
I. Let F be the finite field with q elements~ q = p ~ p a prime. Let 

q 

be t h e  g r o u p  o f  u n i m o d u l a r  (n  + t )  X (n  + I ) - m a t r i c e s  w i t h  e n t r i e s  i n  Fq~ 

a 

I 

I 
d 

i 

AB. A GRAPHICAL REGULAR REPRESENTATION OF SLn(Fq). 

if j >i 



with zeros in all other places, and 

Set 

n= (~ a) a I ~ t = 

196 

-i 

q)ij(A) = <p,i(A t ) 
3 

if j <i. 

1 -I -I 

v = t + t'l + d + d-I + nl + n 1 

Take c ~ ~ 2, a generator of the multiplicative group of Fq, (there exists 

such c since p > 5) and set 

-i -I v = v + u u =n t + t n 
C ¢ 

Next set for n = 1 

W=w=O 

and for n > 2 

w = ~23(t) ~34(t) ... ~n n+l (t) 

= ~12(nl) w + w -I ~12(n_l) + ~12(n4) w + w -I ~12(n 4) 

n ! 

Now set m = v if p = q and m = v if p < q. Also put n = n I + n4~ 

= n 1 + n_4. Next set 

F = ~12(m) + w 

4. As in the preceding section~ let us consider 1 ~2. We have (for n > I) 

F 2 = q012(m)2 + 4 • i + ~012(nl) w ~012(nl) w + ~012(nl) w ~012(n4) w + ~012(n_3) 

+ -I %012(n_i ) w-i ~Pl2(n_l ) + w-I w-I w-I w ~P12(n3) w + %o12(n_i) ~912(n_4) 

+ qo12(n4) w ~012(nl) w + %012(n3) + q)12(n4) w [P12(n4) + w -I w q012 (n_3) w 

+ -i q012(n_4 ) w-i %012(n_i ) + w-1 -i w ~012(n_4 ) w %o12(n_4 ) + %012(m) ~12(nl) w 
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+ ~12(m) w -I ~12(n_l) + ~12(m) ~12(n4) w + ~12(m) w -I ~12(n 4) 

+ ~12(nl) w ~12(m) + w -I ~12(n_l) ~(m) + ~12(n4) w ~12(m) 

-i 
+ w ~12(n_4) ~12(m) = 

= ~12(m) 2 + 4 • i + ~12(nl) ~13(n i) w 2 + ~12(nl) ~13(n 4) w 2 + ~12(n 3) 

+ ~in+l(n_l) ~in(nl ) w "2 + ~in+l(n3 ) + ~in+l(n i) ~in(n4 ) w -2 

+ ~12(n4) ~13(n_l ) w 2 + ~12(n3) + ~12(n4) ~13(n_4 ) w 2 + ~in+l(n 3) 

+ ~in+l(n_4) ~in(nl) w -2 + ~In+l(n_4) ~In(n4) w "2 + ~12(mnl) w 

w-I -i 
+ ~12(m) ~in+l(n_l) + ~12(mn4) w + ~12(m) ~in+l(n 4) w 

w-i -I 
+ ~12(nl) ~13(m) w + ~in+l(n_im) + ~12(n4) ~13(~) w + ~in+l(n 4m) w 

(here ~ is defined by w ~12(m) w -I = ~13(~)) 

= 4 • i + ~12(m 2 + n_3 + n3) + ~in+l(n3 + n_3) ~12(nl+n 4) ~13(n i +n 4) w 2 

For 

w-2 
+ ~in+l(n i + n_4 ) ~01n(n I + n4) + [q012(m(n I + n4) ) + ~Pl2(nl + n4) qOl3(m)] w 

-I 
+ [~01n+l((n_l + n_4)m ) + ~012(m ) ~Pln+l(n i + n_4)] w 

n = I we have r 2 = ~012(m2). 

We want to choose from this sum the terms which have coefficient _> 2. 

It follows from the unicity properties of the Bruhat decomposition (cf.~ [Bo i]) 

that only the following cases can occur: 

a) n = I~ only summands of ~12(m 2) can have coefficient ~ 2; 

b) n = 2~ only summands of ~12(m 2 + n 3 + n 3) 

+ 2[~12(n I + n4) ~13(n_l + n_4) ] ~23(-I) can have coefficient ~ 2 (since 

2 -2 
w = w = ~23(-I) and ~12(na) ~13(nb) = ~13(nb) ~12(na)) in this case; 

c) n ~ 3~ only surm~nds of ~12(m 2 + n_3 + n3) can have coefficients _>2. 

Thus the following holds. 

4.1. Assertion. The terms with coefficients > 2 are contained in 

q)12(m 2) if n = i; 
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~12(m 2 + n 3 + n3) + 2[~12(n I + n4) ~13(n i + n 4)] ~23(-I) if n = 2; 

q012(m2 + n_3 + n 3) if n > 2. 

To compute %012(m2), put a = i + n I 

= b' = i + n_l a' I + n 1 + n c ~ 

v = b t  " l  + t b '  + c 

v =at + ta' + c 

2 I 
v = bt'Ibt" 

--2 -i -i 
v = at at 

+ b= i+ c=nl+ ne~ nl~ n_l~ 

2 
+ bb' + bt-lc + tb'bt -I + tb'tb' + tb'c + cbt -I + ctb' + c . 

+ aa' + at-lc + ta'at -I + ta'ta' + ta'c + cat -I + cta' + c 2. 

2 --2 
Note first that n+3 does not enter in v or v ~ since c ~ ! 2. 

We are going next to use the uniqueness of the Bruhat decomposition in 

To this end note that for d ~ 0~ one has 

SL(2). 

It follows from this equality that we have 

2 
4.2 Assertion. The terms with coefficient 2 in m + nq + n_q 

2 
in v . 

are all contained 

(Indeed if d above is not ~ i~ then we get nontrivial diagonal element~ 

which cannot be obtained in any other way.) 

2 
Let us now compute v . We have 

v 2 = 6 • I + t 2 + t -2 + nlt-lnlt-i + tn itn_l + n 2 + n_2 + tnl t-I + t2n_l + tn I 

+ tn i + t-lnl t'l + n_l + t-lnl + t-ln_l + n I + nlt-2 + nlt-lnl + nlt-ln_l 

+ tn it + tn_it-I + t + tn_2 + nit + nl t-I + n2t'l + nltn i + n_it + n_l t-I 

-1 
+ t + n--tn-l'i 

Using the relations 

-i 
tnlt = nlt nl~ tn.lt = n.ltn_l 
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which we already used above, and also the equality <.01 

-1 connects  t and t 

2 
v 

we get 

= 6 • I + (t 2 + t -2) + n2t-ln I + n itn 2 + n 2 + n 2 + nltn I + t2n i + tn I + tn_l 

+ nlt-lnl + n i + t-lnl + t-ln i + n I + nl t-2 + nlt-ln I + nlt-ln i + n itn_l 

+ n_it-ln_l + t + tn 2 + nlt + nlt-i + n2t-I + nltn_l + n_it + n i t-I + t -I 

+ n_itn_l. 

It is seen from this expression that the coefficient 2 has only the following 

expression: 

d = t 2 + nlt'in I + n_itn_l 

Therefore~ it follows from 4.1 and from the computations above that the assertion 

below holds: 

4.3. 

d 2 = 1 + nltn I + n it'in_l + nltn I + nlt n2t n I + 1 + n_it 

-i 
3 i + 2[nltnl + n it'l [ 0 ~ ) = " n - i ]  + n-3 ~2 n-3 + n3 

Further 

~12(d)[~12(d) + ~12(nl + n 4) ~13(n_l + n_4) ~23(-i)] 

= and ~12(d 2) + ~12(dnl + dn 4) ~13(n_l + n_4) ~23 (-I) 

[~12(d) + ~12(nl + n 4) ~13(n_l + n_4)] ~23 (-I) ~12 (d) 

= ~12(d 2) + ~12(nl t2 + n4t2) ~13(nl + n 4) ~23 (-I) + ~12(x) ~I3(Y) ~23 (z) 

z ~ ± l , z ~ O .  

Next 

• 12(nl + n 4) ~13(n_l + n 4) ~23 (-I) ~12(nl + n 4) ~13(n_l + n.4) ~23 (-I) 

= ~12((n I + n4)(n I + n 4)) ~13((n_ 1 + n_4)(n I + n4)) 

= ~12(2 • I + n_3 + n3) ~13(2 • i + n_3 + n3) 

Assertion. i) If n ~ 2~ then f = q012(d) e ~(r). 

ii) If n = 2~ then f = ~12(d) + ~12(nl + n 4) ~013(n_l+ n 4) q023(-i) e OL(F). 

We have 

-I -I -i 
n i + I + n_itn_2tn i 

where 
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: 2 - i + 2~12(n 3 + n_3) + 2~13(n 3 + n_3) + ~12(n3 + n_3) ~13(n3 + n_3). 

It follows that 

4.4. Assertion. The coefficient 2 in f2 has 

g = ~12(nltnl + n_it-In_l ) if n ¢ 2 

-I 
g = ~12(nltn I + n_it n_l + n 3 + n_3 ) + ~13(n3 + n_3) if n : 2. 

Therefore g e ~'). 

Now~ if n .... 2; then compare g with 

~12(m 2 + n 3 + n_3 ) + 2[~12(n I + n4) ~13(n_l + n_4)] ~23(-i) (which belongs to 

off(r) by 4.1). It follows that 

-i 
g'= ~12(nltnl + n_it n I + n 3 + n_3) e 0~(r). 

Now for n ~ 2 consider 

s : fg Q f c 0~.(r) , 

and for n : 2 

s = fg' N f e OL(I'). 

We see that in both cases 

s = %012(nlt-ln I + n itn_l) 

which implies the following: 

4.5. Assertion. s : ~12(nlt'Inl + n_itn_l) 

~12(t 2) = ~12(d) - s e 0%.(~). 

2 
Now consider t • m + m. The coefficient 2 

-I 
t+ t 

OL(F) and 

in this expression has only 

whence 



4.6. Assertion. ~12(t + t -1) e ~(F). 

Note that ~12(t + t -1) • s and F 2 

~12(n_Itn_2 ) (ef.~ expression for v). 

4.7. Assertion. ~12(n_itn_2) e ~(F). 

Next we have 

201 

have only one common term~ namely 

Therefore~ 

(nltnl + n it-ln i) n_itn_2 t2n_l + n 3 (~ -2-1) 
- - = 0 n-4 

F 2 , namely 

~u (F). 

t and n_l 

Since this latter expression has only one common term with 

2 ~12(t2nl ) t n_l ~ we have , and by 4.4 also ~12(n_l) belongs to 

4.8. Assertion. ~12(n i) ¢ o'g(F). 

From 4.7 and 4.8 it follows that $12(t) e 0L(F). Since 

SL(2~Fp), we have 

4.9. Assertion. ~12(SL(2~%)) c 0t.(F). 

Now note that F • ~12(t) and 

the following part in common: 

~)12(nl) [I TM . q012(t)] q)12(n_l ) 

generate 

have only 

~12(I + n + c nl)" 

Since i, ~012(nl) e ~t(l~)~ we have q012(nc) ¢ 0L(F). By Dixon's theorem 

(SL(2~Fq) is generated by (I I 0)and nc)and we have 

4.10. Proposition. ~I2(SL(2,Fq)) c oz.(F). 

Therefore 

w ¢ ~(F) 

Note that w is the only term common to ~12(n_l) w and qDl2(n 4 ) w~ whence 

4.11. Assertion. w e O~.(F). 
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To get our theorem~ note that 

-i 
wi~12(SL2(Fq) ) w = ~I2+i(SL2(Fq)) for i = 0~ I~ 2~ ...~ n - I~ and that these 

groups ~Ij(SL2(Fq))~ j = 2~ ...~ n + I~ generate SLn+I(Fq). 



AC. ONE MORE EXAMPLE OF A CELL WITH ONE GENERATOR. 

The two preceding sections were~ in fact~ dedicated to a proof that in some 

cases a cellular algebra (it was ZIG]) has one generator (as a cellular algebra) and 

that one can take a simple graph as such a generator. In this section~ we consider 

one more example of this kind. 

I. Again let F be the finite field with q elements~ G an absolutely almost 
q 

simple connected and simply connected algebraic group~ defined and split over F 
q 

(cf.~ e.g.~ [Bo i]). Let T be a maximal torus of G~ defined and split over Fq~ 

B a Borel subgroup of G containing T. Further let G(F ) be the set of the F - 
q q 

rational points of G, NG(Fq)(T(Fq)) the normalizer of T(Fq) in G(Fq)~ 

W = NG(L)T(Fq))/T(Irq) the Weyl group of G with respect to T. 

As an example~ one can take G = SLn+ I. Then G(Fq) = SLn+I(F q) is the group 

of the preceding section~ T is the set of diagonal matrices in G~ NG(~)(T(F )) 
=q q 

is the set of monomial matrices with entries in F . Then W is isomorphic to the 
q 

symmetric group Sym(n + I). 

We want to show that the centralizer ring 

has one generator ~ which is a simple graph: Or. = O~(F). 

Remark. If it were known that Aut OL = G(Fq)~ we would have the stronger 

assertion~ that there exists a simple graph 1 ~ such that Aut r _~ G(Fq)~ 

II~1 = IG<Fq)/BCFq>I, ~b(r) = ~ .  

2. It is known that 0~. is isomorphic as an algebra to Z[W]~ where W i~ the 

Weyl group of G (see [Bo I], [Iw I]~ [Yo i]). 

It is also known that double cosets Sw = B(Fq) wB(Fq)~ w e W~ form a standard 

basis of 01~ and for fundamental reflections Wl~ ...~ w~ one has the following 

relations (see [Iw i]~ [Yo 1]): 
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S S = S if ~(w w) > Z(w) 
w. w w.w i 
i i 

S S = S if Z(ww ) > Z(w) 
W W~ ~F~7. I 

1 1 

SwSw = qSw w + (q - i) Sw if ~(wwi) < ~(w) 
i i 

Sw.Sw = qSww + (q - i) Sw if ~(w.w)l < ~(w) 
1 1 

Here ~(w) is the length of a shortest expression of w through w.. 
i 

Remark. The following considerations are easily extendable to the case of quasi- 

s p l i t  g r o u p s  and Ree g r o u p s  o f  type  F 4.  Such g e n e r a l i z a t i o n  i n f l u e n c e s  o n l y  t h e  

structure constants in the expressions of S S in the basic elements. 
w w. 

l 

3. Theorem. Let ~ = 7 (G(Fq)~ (G/B)(F))~ q > 2 and rg G _> 2. Then there 
q 

exists a s i m p l e  g r a p h  

I ~ e OU~ such that ~-(F) = 0%. 

Proof. Let ~ be a system of simple roots of G° To begin with~ let us consider 

the case 141 > 3. Let us choose two roots ~r' ~m ~ A such that ~ and 
- r m 

generate a subsystem of type A 2 in the root system of G. Let ~ = {~i} and 

s u p p o s e  t h a t  w. i s  the  r e f l e c t i o n  in 6 . .  Pu t  S. = S and 
l 1 l W. 

i 

r = S + S w + S w + 52i~r~m 
r Wr m Wm r 

s 2 =q • i+ (q- l) s 
i I 

S.. One has 
1 

S.S = S ~SrS i = S i r w w w 
i r r i 

SiS w = S if i ~ r,m, 
w w i w r Wm r m 

S.S = S if i ~ r~m, 
lwW w ww 

mr irm 

S S =S 
w w i w w w if i ~ r;m~ 
mr mr i 



205 

S S = S if i ~ r~m~ 
w w i w w w 
rm r m i 

S S = qSm + (q - I) S 
rww ww 

rm rm 

SS =S 
rww www 

mr rmr 

S S =S 
ww r www 
rm rmr 

S w S r + (q - I) S w = qSm w w 
m r m r 

2 
(Sw w ) = (SmSrSm) Sr 

m r 

S S = SrSmSrS r = qSrS m + (q - i) S r m r 

(here we used the relation S S S = S S S 
rmr mrm 

r e l a t i o n  in  W). 

(Sw w )2 = (SrSmSr) Sm = (SmSrSm) Sm 
r m 

which follows from the corresponding 

= qSmS r + (q - i) Smr mS S = 

= qSmS r + (q - I) S S S rmr 

S w S w = S S S S w w r mmr 
r m m r 

2 2 
= qS r + (q - I) SrSmSr = q • i + q(q - I) S r +(q-l) SSS 

r mr 

2 
S S = q • I + q(q - I) S m + (q - I) S S S 
ww ww r mr 
mr r m 

Therefore we have 

I ~2 = (q + 2q 2) • i + (q2 _ I) S r + (2 + q) Sm+ (2q - I) S S 
m r 

+ (4q - 2) SrSmSr + (q - i) ~i~r~m Si + ('" ")" 

All surmnands in the parentheses have coefficient I or 2 (namely~ if 

wiw j = wjwi~ then Sw.w., i~ j ~ m, r, has coefficient 2). 

i J q2 2 
Since q > 2~ we see that - I~ q + q, 2q - i, 4q - 2~ q - I are all 

2 2 
distinct. Also q - I~ q + q~ 2q - i~ 4q - 2 are greater than 2 (if q > 2). 

Therefore, Sr, Sm~ Smr , Sr Sm Sr e OD(F). But then Srm e ~_(F)~ whence 

~i~r~m S.I e 0~(F). Next we can apply the same reasoning as in the case of 

Z[Sym(n)]. Namely~ we can take one of the S or S such that (denote our 
r m 

choice by S): 
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S(Ei~r~ m Si) S : S S S + S. j ~i~r~m,j l 

whence S. e ~(~) and so forth. 
J 

Let us now consider the case 141 = 2, A = [~i,~2}. If G has type A2~ then 

all preceding computations without any alteration or new comment Lad us to our 

assertion. When G is not of type A 2 (that is~ it is of type B 2 or G2) ~ we put 

r = S I + SIS 2 + $2S I 

Since G is not of type A2, one has 

(SIS2)(SIS 2) = SwlW2WlW2 

(S2SI)($2SI) = SW2WlW2Wl 

Therefore 

F 2 = q • I + (q - I) S I + qS 2 + (q - i) SIS 2 

+ SIS2S I + SIS2S I + qS 2 + (q - i) $2S I 

+ SIS2SIS 2 + $2SIS2S I + q2,1 + q(q - I) S I 

+ (q - i) SIS2S I + q21 + q(q - I) S 2 + (q - I) S2SIS 2 

This again implies that SI~ S 2 c o"~ (since these summands have the greatest 

and unequal coefficients). Thus in the case 141 = 2, our assertion also follows. 



AD. DEEP CONSTANTS 

I. We consider here formations which arise in ~ne of the possible definitions of depth 

compare~ 0 6.3. The discussions of this section are rather fragmentary and their 

aim is to point out relations which one obtains with the strengthening of a 

definition of a stationary graph. Analogous relations are considered in [He i]. 

We examine here only the case of a cell; the extension to general stationary 

graphs can be obtained without difficulty but leads to a much more complex 

exposition, compare Section D with E 4. 

2. Let X = (xij) be a stationary graph~ X = ~icI xiei" We say that the edge 

Xab is of type k if Xab = x k. 

Let (V(X)) m be the set of all ordered m-tuples of vertices. Let 

(a~ b, Cl, ..., c m) e (V(X)) m+2. We say that this set is of type 

(k; il' "''' im; Jl ~ "''~ Jm; A)~ where k, Ip~" jp c I~ A = (Spq) is (mxm)-matrix~ 
-> 

s e I~ s = s' if = x = x x = x We shall write 
pq pq qp' Xab Xk' a,Cp ip' Cp,Cq Spq 

in place of (il, ..., im) and j in place of (Jl' ...~ jm ). Let us note that it 

would be more convenient to consider i as a row-vector and j as a column vector. 

In this section we use the following notation: If i = (il~ ..., im) , then 

-~ -~t i' = (ii~ ..., i')~m i is the column-vector with the same coordinates. If A is 

a matrix, then A t is its transpose. 

3. Let us consider the class of stationary graphs such that for any edge (a~b) of 

type k and for any m e [l,n] the number of all sets (a~b; Cl, ..., Cm) of any 

given type (k; i; j; A) is the same (and does not depend on the choice of the edge 

(a,b) of type k). (Note that these are ordered sets, possibly with repetitions.) 

k 
We denote this number by a 

i,j~A 

If G is a permutation group on V(X) and X = X(~ (G~V(X))), then G acts 

transitively on edges of a given type (cf., F 4.1). Therefore, such graphs X 

satisfy the above condition. 

k 
4. Let us state some relations for the numbers a_~_~ in the case of a ceil. Let 

i,j,A 
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e 0 = E n- 

Put A = (Spq). We shall sometimes write A in the form 

A: i B 

t "''J t 

where B is (r × r)-matrix~ C is 

length m - r~ r < m. 

Furthermore~ we write: 

for the matrix obtained from 
r 

of 

(m - r X m - r)-matrix~ s i is a vector of 

A by deleting the r-th row and r-th column, 

A 

( i t ~  . . . ~  ir~ . . . ~  im) for  the v e c t o r  wi th  d e l e t e d  r - t h  component ,  

il~ i 2 for the vector whose components are components of i I followed by those 

i 2 • 

If g e Sym(m), then 

-> 

gi = (ig(1)~ig(2), ..., ig(m )) 

Theorem. The following relations hold. 

4.1. 
k k' 

a~ = a~, ~, 
i~j~A j ~i ~A" 

4.2. 
k 

gi~gj~g Ag 

k 
a ~ ~ g ¢ Sym(m). 
i~j,A 

0 
4.3. a 

i~ j~A 
i 

( ~m 6ikJ r 
k=l k) n i r a i l ~  

all r c [l~m]. 

"''~ Ir~ " ~ Srl~ "''~ rr' "" Srm' r 

4.4. ~ ak _~ 0 = a÷_~ 
i i~j,A j,j'~A 

for 
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i 
k k i 

~2,~2, -~ a-~ -~ ~P = a~ , a~ _~, . • ..,s r ili2;J132 ;A ~l,Jl ,B ~2~Sl ~c 

k k s12 

i2~J2~s3 "'',s r ill2;JlJ2 ;A il~Jl ,B sI~S~,C 

4.7. ~ ~ k k k 
Sl~2,.. .,~ a ~ = a~ _~ . a_? ~ . I~j~A il~Jl~B ~2~J2~C 

Proofs. They are elementary and analogous to the geometrical proofs of properties 

k 
of the numbers aij , compare D 4 c 1 - c 8o 

Let (a~b) be an edge of type k and (a~b; Cl~ ...~ Cm) a set of type 

(k; i~j~A). 

Then the set (b,a; Cl~ ...~ Cm) is of type (k'; ~'~]',A). This proves 4.1. 

If g e Sym(m) then (a,b; Cg(1)~ ...~ Cg(m)) is a set of type 

(k; gl~ g~, g-lAg) whence 4.2. 

To prove 4.3, consider the case a = b. Then (since a = b) the number 

0 
a is zero unless ik = Jk for all k. Suppose that ik = Jk for all k. 
l~j~A 

A 

Then (a~Cr; el~ ...~ Sr~ ...~ Cm) is a set of type (ir; ii,' ...~ ir,• ...~ im; 

Srl ~ ..., Srr ~ ...~ Srm ~ Ar). On the other hand let dl~ ...~ d be vertices 
nir 

of X such that (a~di) is of type Jr. Then by the assumption stated in the 

beginning of 3. there exists the same number 

i 
r 

a, ^ ^ 

l~i "'" ~ir '''" ~im;srl ~''" ~srr~''" ;srm~Ar 

of sets of type 

t h e  n .  e d g e s  
1 

r 

(0; i,i' ~A) on 

^ ^ ~r) 
• " . . • • s . .. on each of 

(Ir; Ii~ "'~ ir~ "'~ im' rl~ "'~ Srr~ "~ Srm~ 

(a;di). Each such set can be considered as a set of type 

(a~a) and each set of type (O;i,i'~A) gives rise to a set of new 

type in the manner described above. Therefore~ 4.3 is proved. 

The summation in 4.4 means that we have to consider all sets 

(a~b; Cl~ ...~ Cm) such that the types of edges (a~Cr) are arbitrary. It is the 

same as to consider all sets (a,b;Cl,...,c m) for which only the types of the edges 
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(b~Cr) and (Cs~Ct) are fixed. This is the same as to consider the sets 

0 
(b~b; el, ...~ Cm). Since the number of these sets is a~ ~ ~ 4.4 is proved. 

j~j'~A 

The surmnation in 4.5 means that we have to consider all sets (a,b; Cl~ ..., c m) 

such that the types of edges (b~Cr+l) ~ ...~ (b,Cm) ; (Cs~Ct) ~ s 6 [2,r]~ t ~ r + i, 

are arbitrary; (a~Cs) ~ s 6 [l~r]~ are of type is; (b~Cs) , s ~ [l,r]~ are of type 

Js' (Cq~Ct)~ q ~ [2~r] or t _< r~ are of type Sq~t. This means that we have to 

consider all configurations (there are a~ k ~ of them) (a~b; Cl~ ...~ Cr) of 

il~Jl ~B 

type (k; lI~31,B) and on the edge (a~cl) of each of them all configurations of 

~, il 
type (il; i2,Sl~C) (there are a~ ~ of them). So the entire number is the 

i2~sl~ C 

product of these numbers~ which proves 4.5. 

The summation in 4.6 means that we have to consider all sets 

such that only types of (a~ci) , i ~ r; (b~ci) ~ i < r; (Cs,Ct) ~ s ~ [3~r] or 

are fixed. This means that we have to consider all configurations of type 

~ k 
(k; il~Jl~B) (there are ~ ~ of them) (a~b; Cl~... ~ c r) on the edge 

il~Jl ~B 

and on the edge (ci~c2) of them all configurations of type (Sl2~Sl~S2~C) 

s12 
are a of them). 

Sl~S2~C 

(a~b; Cl~ ...~ c m) 

t_<r~ 

(a,b) 

(there 

So the entire number is the product of these numbers~ 

which proves 4.6. 

The surm~tion in 4.7 means that we have to consider all sets (a~b; CIr... ~ Cm) 

such that only types of (a~ci) ~ i e [l~m]; (b~ci) ~ i ~ [l~m]; (Cq,Ct) ~ q < r, 

t > r + I~ are fixed. This means that we have to consider all configurations of 

-> ÷ k 
type (k; il,Jl~B) on the edge (a~b) (there are a~ i of them) and all 

ii~31 ,B 

k 
configurations of type (k; i2~J2~C) on the edge (a~b) (there are a~ ~ of 

12~J2~C 

them). So the entire number is the product of these numbers~ which proves 4.7. 

k 
5. If m = I~ the constants of this section are the structure constants aij of the 

k 
a l g e b r a  0 L ( X ) .  I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  a l l  r e l a t i o n s  D 4 c 1 - c 6 on a i j  

are corollaries of the relations 4.1 - 4.6 for m = I and/or m = 2. 
.! 

i = n j a d  f o l l o w s  f r o m  4 . 3  a n d  4 . 1 :  E.g.~ niajk i' 
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0 
a. • ~3 ;i'j' (~ ~) i n a j = njaJi ' 

, = niajk = j ik' 

One more example: 

~s s k k s 
aijas~ = ~s aisaj~ 

follows from 4.5 and 4.2: 

k (0, ~) =~s k s k k 
Zt,s ait~s~ j aisaj~ = ~t aijat~ 

6. (Compare D4 c 9~ c I0). Let 

6. I. Lemma. 
0 

a 

k,'~ :k' ,~' ,B 
k 

= n a 
k ~  • 

l~J~ 

Proof follows directly from 4.3. 

6.2. Corollary. 
i 

k r 
na =n~ a . ^ ^ 
k ~ ~ Jr~Sr~l~ • l~j~A ir k'll~ "''' ir~ "''~ im; "' "''~ ~ B rr ~ "''~ Srm' r 

Proof follows from 6.1 and 4.3. 

6.3. Theorem. Let N~ ~ be the least common multiple of all numbers 
i~j~A 

k n. ~n Then N divides n a . 
ip jp'nSpq l~j~A k ~,~A 

k 
Proof. By 6.2, nk~ ~a is a multiple of all n i . By 6.2 and 6.1 it is also a 

i~j~A r 

multiple of all n.. Applying the same reasoning to the right side of 6.2, we see 
Jr 

that our number is a multiple of all n , as required. 
S 

Pq 

6.4. Remark. It follows from 6.3 that k a~ 
i,j,A 

is a multiple of all numbers 
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nc(nk~N ~ m ~  )-I Applying this consideration to the right side of 6.2, one can 
i~j,A 

strengthen Theorem 6.3. Specifically~ one can define N~ ~ recursively as the 
i~j~A 

least common multiple of all numbers 

n~ (n i , . ^ ,Srm;~r )-I • .. " . " ^ ~... " This strengthening of r r Nk'll ~ ~lr~" "~lm'Jr~Srl~' ' '~Srr 
6.3 also is not final since one can iterate this consideration. 



AE. ALGEBRAIC INVARIANTS OF FINITE GRAPHS 

I. Many mathematicians, myself included~ who have an algebraic background, say, when 

told about the problem of graph isomorphism: "What is the question? Invariant 

polynomial surely distinguish graphs up to isomorphism." 

i.I. They allude to the following result from the algebraic geometry (cf., [Se 4]): 

Let M be an affine algebraic manifold over a field k~ k[M] be the ring of 

regular functions on M. Suppose that a finite group G acts on M (and preserves 

the algebraic structure), Let R = k[M] G be the ring of invariants under G regular 

functions. Then R distinguishes orbits of G on M and M/G is the affine 

manifold whose ring of regular functions is R. 

This means that two points of M lie on the same orbit of G if and only if 

the values of any function from R are the same at those two points. 

1.2. In our case~ M is the space of all matrices of order n 

matrices, or of all symmetric matrices with zero diagonal) and 

in the following manner: 

(or of all symmetric 

G = Sym n acts on M 

-I 
A )gAg 

According to the Hilbert's Theorem, the ring of invariants has a finite 

generator set. Hence the approach stated above is not infinite. 

1.3. However, if fl~ ..., fN are the generators of the ring of invariants, one 

should compute all functions fi to establish the isomorphism or non-isomorphism. 

But fi can be rather complicated and the number N can be large. 

1.4. The aim of the present section is to exhibit and to interpret some of the 

complications which were encountered during an ateempt to use the invariants. It 

seems that these complications are of the same nature as those of Sections M r ADo 

2. We shall show below how the values of the invariants of simple graphs (that is~ 

of its adjacency matrix) are interpreted in geometrical terms. 
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2.1. To every monomial m of the form 

m = ~a.. 
lj 

in the matrix entries we associate a graph F(m) in the following manner: 

F(m) has the edge (i,j) if and only if a.. enters in m. 
lJ 

Then the number of edges of ~(m) is the degree of m; the number of vertices 

of ~(m) is the number of distinct indices of a.o entering in m. lj 

If F is a simple graph~ then the value of m on A(F) is 1 if F(m) (with 

the given numeration of vertices) is a subgraph of ~ and is 0 if ~(m)¢~. 

2.2. Now let f be an invariant polynomial for the group Sym n on the space of the 

syrmmetric n × n-matrices with zero diagonal, it is easy to see that f is a linear 

combination of invariants of the form 

f(m) = Z m g 

where g runs over a set of coset representatives of Sym n by a subgroup, fixing 

Therefore~ it can be assumed that f has the above form~ i.e.~ f = f(m). 

Then the value of f on A(~) is evidently equal to the number of 

embeddings of (the abstract graph) ~(m) in F considered up to isomorphism. 

m. 

2.3. Remark. It can be seen from the above argument that the Theorem I.I is 

evident in our case, since to the whole graph ~ there corresponds some monomial of 

degree equal to the number of edges of ~, and to this monomial there corresponds the 

invariant which itself completely determines the isomorphism class of ~. 

2.4. By 2.3 to distinguish graphs with n vertices,it is sufficient to consider 

2 
only invariants of degrees ~ n . However~ all those invariants should not be 

considered. It is sufficient to construct a basis of invariants. But this basis 

contains perhaps too many invariants and many of them have (also perhaps) a high 

degree (e.g.~ degree n). Computation of an invariant of degree t requires~ a 

priori, t • actions. This shows that the possibility to use algebraic 
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invariants requires further research. 

2.5. Remark. Note that the values of some invariants of high degree on A(r) can 

be determined from values of simpler ones without use of algebraic relations. Define 

for every monomial m another monomial m in the following manner: 

m is the product of the matrix entries entering in m and taken in the first 

m. ° 
power~ that is, if m(A) = ~ailJ ~j then m(A) = ~a t(mij)., where 

~J 

t(mij ) = I if mij > 0 and t(mij ) = 0 if mij = O. 

If A = A(r), then evidently m(A) = m(A). If f = f(m), T = f(~), then 

f(A) = d • T(A)~ where d is the index of the group fixing m in the group 

fixing m. 

This shows that in order to study isomorphisms of simple graphs (or more gener- 

ally of graphs without multiple edges) it is sufficient to consider the invariants 7. 

3. Remarks of the preceding subsection are easily extended to the general case. 

Indeed~ suppose that we have to establish whether two n X n-matrices A and B 

belong to the same orbit of Sym n. Replace the pair [A,B~ by X([A,B})= {X,Y~ 

(simultaneous stabilization~ cf. M 4). 

Let us now indicate some analogues of the considerations of the preceding 

subsection. 

3.1. To every monomial in the variables entering in X and Y~ let us associate a 

graph (in the sense of Section C) in the same manner as in 2.1. Then the monomial 

m in the matrix entries determines an equivalence class of graphs (cf.~ C 2). 

The value of f(m) on X determines the number of embeddings (up to isomorphism) 

of every representative (up to isomorphism) of that equivalency class into X (an 

analogue of 2.2). 

3.2. As an analogue of 2.5, the following schema is proposed. 

In place of the invariants of degree r we shall consider elements of the tensor 

product of d distinct copies of the space of matrices (recall that invariants of 

degree r are elements of the r-th symmetric power of the dual space of the space 

of matrices). It frees us from the necessity to substitute m by m but leads to 
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difficulties, one of which is the fact that our new object is not a ring. 

4. Let us finally give a few examples. 

Let A = (aij) be a matrix. 

4.1. A basis of invariants of degree I. 

a) ~2i~ j aij 

b )  I; .  a .  
k 11 

4.2. A basis of invariants of degree 2. 

a )  P,, a . .  a 
i>j 11 J3 

2 
b )  E . a . .  

1 l l  

e) ~igj aii aij 

d) Ei~j,j~k,i~ k aii ajk 

2 
e) ~i~j aij 

f) ~i~j aij aji 

g) Ei~j,j~k,i~ k aij ajk 

h) Ei~j,j~k,i~ k aij aik 

i) ~i~j,j~k,k~l,i~k,i~l~j~l aij akl 



AG. CONJECTURES. 

Below we state some conjectures and indicate directions of research which are 

now of interest for us. 

I. Coniecture. (Arlazarov). Let ~ be a graph, n = I~l. The algorithm of Section 

C log n 
R finishes its work in n steps. 

It is interesting to note that usually when an algorithm is given~ the estimates 

of its speed are obtained relatively easily. In the case under consideration for 

many examples the algorithm finishes its work "momentarily;" howeverj no good estim- 

ate is obtained. Hypothesis I is close and~ possibly~ equivalent to the assumption: 

If X = (Xij) is a stationary graph of depth (log IXI) in some sense 

(cf.~ O 6)~ then the sets V(Xii ) are orbits of Aut X. 

One of the obstructions to the proof of the estimate is the necessity to pay 

special attention to correct graphs. 

2. Question. Construct a lower bound on the number of steps required to establish 

isomorphism or non-isomorphism of graphs. 

Perhaps, in order to find such bounds one should be able to compute the number of 

stationary graphs of the given depth k which have the same "structure constants" 

for every depth ~ k. 

It is interesting to note that all algorithms for establishing isomorphism 

known to us are algorithms of canonization; that is~ they reorder vertices of the first 

graph and of the second graph~and then compare results. The use of algebraic 

invariants (cf.~ Section AE) just solves the isomorphism problem (without canonizing). 

Difficulties arising in that direction were indicated in Section AE. 

3. Question. Find an algorithm of construction of cells (or of strongly regular 

graphs) which will construct exactly one representative of each isomorphism class. 

Such an algorithm~ if it exists~ has to use deep structural properties of cells. 

Seidel equivalence~ descent-ascent (cf.~ Section V) are examples of the existence of 

large common parts of strongly regular graphs. Some other cases of closeness are 

pointed out in Section V. 
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4. Question. Does the center (as algebra) of a cell form a cell? 

If it were true~ more information on a k.. and on the existence would be obtained. 
lj 

Besides~ such an assertion would have an independent interest. For some centralizer 

rings items proved in [Ta 3]. Possibly by the method of [ra 3] at least a proper sub- 

cell of a cell can be constructed. If such a process would stop, the cells where it 

does not give proper subalgebra are of special interest° 

5. Question. Extend the results of R. E. Block [BI I], [BI 2] to cellular algebras. 

Those results have formulations which also make sense for cellular algebras. 

Their proof would give ample information about the structure of cellular algebras. 

6. QuestioD. Extend the Chowla-Bruck-Ryser theorem [Ha 3] to cellular algebras. 

A Hermitian form may be associated to every basic element (it is quadratic if that 

element is symmetric). Therefore, results of Hasse-Minkowski are applicable~ in 

principle. The question is how to express the invariants of our forms in terms 

of the structure constants. In particular~ the question arises whether they are 

expressible or not. Note~ however~ that if they are not expressible~ a new 

invariant of a cellular algebra would be obtained. 
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