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ON A CASE OF EXTENSIONS OF GROUP SCHEMES
BY
B. WEISFEILER!

ABSTRACT. The extensions of a smooth connected commutative group
scheme whose generic fiber is G,, by the additive group scheme are studied.
The results are most explicit in the case when the basic scheme is the
spectrum of an integral domain containing a field.

We compute in this note the group Ext(G,(b), G, ,). Here A denotes an
integral domain, and G, , stands as usual for the additive group scheme over
A (ie., A[G, 4] = A[x], p(x) = 1® x + x ® 1). Further, G,(b) for b € 4
denotes the group scheme over A whose ring of the regular functions is
Alx,y]/x(by + 1) = 1 and the comultiplication is given by u(x) = x ® x,
p(y) =1®y+y®1+by®y. We have G,(0) = G, ,, and if b € 4*
then G,(b) = G,, 4, the multiplicative group scheme over 4. Thus the family
of groups G,(b), b € A4, can be considered as a “deformation” of G, , into
G,, 4- (The deformation family is the group G, (#).) The groups G,(b),
b # 0, can be interpreted as the congruence subgroups modulo b of the group
G,(b). (Namely, points of G,(b) over any A-algebra B which is an integral
domain are elements (by + 1) € B* with y € B, i.e. elements = 1 mod bB.)
It could be shown (we do not use the fact below) that over a regular local
domain A any smooth group scheme with connected fibres whose general
fibre is G, is isomorphic to a group G,(b), b # 0.

An example of nontrivial extension in the case b & A*, b # 0, is the group
G with ring A[x, y, z]/x(by + 1) = 1 and with the comultiplication p(x) = x
Ox, p)=y®1+1Qy+byQy, wW(2)=z01+1®z+y®y. Or,
on the points: (x, y, z)(x',y’, z2) = (xx",y + y' + byy’, z + 2’ + yy’); or, in
the matrices

1 y z||1 y z 1 y+y + by z+ 2z +yy
0 by+1 y||0 b'+1 y|=|0 1+b(y+y +by) y+y +by|
0 0 1j10 0 1 0 0 1
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172 B. WEISFEILER

This example shows that there exist nontrivial extensions in the case b & A*,
b # 0. It is known, however (and follows from 4.6 below), that all extensions
are trivial in the case b € A* (then G,(b) = G,, ,). In the case b = 0 we have
G,(b) = G, 4 and the extensions in this case are described in [3, XV 3(iii)],
[4, 4.7.47.3]. If A D Q, the rational numbers we have Ext(G,(b), G, 4) =0
both for b = 0 and for b € A4*. It is strange that this group Ext(G,(b), G, ,)
is not trivial in the intermediate cases b & A*, b # 0.

Among other things it should be also noted that although the results below
could be formulated without restrictions on the ring, which probably implies
that there exist general proofs, our approach is by direct computation and it is
based on the explicit description of some submodule of Ext(G,(b), G, ,). But
even after this explicit description is obtained, the proofs involve a lot of
computation.

This paper and its author owe very much to several people. I. Dolgachov
taught me the main concepts of the theory of group schemes and this paper is
a by-product of our joint study of unipotent group schemes (cf. [4]). The
results of this paper were discussed with D. Kazhdan whose sincere interest
was stimulating and whose remarks were illuminating. Professor W. Messing
made many corrections and essentially simplified proofs of Proposition 2, and
Lemmas 3.4, 3.1 and 7.1 (the proofs of these statements given below are his),
Professor H. Miyanishi also sent me many corrections and suggestions. I am
grateful to I. Dolgachov, D. Kazhdan, W. Messing, M. Miyanishi for their
interest and patience.

1. Notations and formulation of main results. Let K be the field of quotients
of A, T = {f € K[»]|f(0) = 0}/{f € A[y]|f(0) = 0} (4-module quotient).
We shall represent elements of T as polynomials from K[y] having zero
constant term.

Let Q(y) = Simp @y’ € K[y]. Set Q1(y) = S1.,, a,()y' ™™

(REMARK (D. KAZHDAN). When it makes sense we have Q!"l(y) =
(m!)~'(d/dy)™. So in general we can represent Q™s as follows. Instead of
the ring of differential operators (in one variable) with constant coefficients
we take the ring of divided powers and make it act on K[y]. The Q!"’s are
the results of application of some basic elements of this ring to Q. So the
picture is similar (or dual to similar) to the relation to polynomial rings and
divided power rings.)

Suppose that b # 0 and set

D,(Q)(») = (b + 1)0"(y) - 0'0)

and denote by R the A-algebra of operators on K[y], generated by D;, i > 0.
We set D, = identity operator.
The ring R evidently preserves A[y]. Hence it acts on 7. We denote by Ty
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the set of common zeros of all D;,i > 0,on T, T = {P(y) € T|R(P) = 0}
= {P(y) € T|D,(P) = 0 Vi > 0}. Introduce polynomials P,(y) =
b= 'S, 5 is(—yb) (i)~ € Z[b~', (m!)~'][y] where b is an indeterminate.

(ReMARK. These polynomials are truncated series for log(1 + by) multiplied
by b=™71) When K is of characteristic p > 0, define F: K[y]— K[y] by
F(P(y)) = (P(»)Y, so that FA = A?F for A € K. Denote by II(4) the set of
primes which are not invertible in 4.

Note that Ext(G,(b), G, ,) is a module over the endomorphism ring of
G,, 4. In particular, it is an A-module and if K is of characteristic p > 0 then
it is an A[F]-module.

The main results of the present note are the following:

1.1. R is a commutative ring and it is generated by D,., i > 0, p € II(4) (cf.
4.1).

1.2. Ext(G,(b), G, 4) contains an A-submodule isomorphic to Ty (cf.
Proposition 2 and Lemma 3.3).

1.3. Ext(G,(b), G, ,) is the union of its 4-submodules annihilated by
powers of b. In particular, it is zero if b € A* (cf. 3.5, 3.6).

14.1f A O Q, then

() R = A[D] (cf. 1.1).

(i) Ext(G4(b), G, 4) = Tg (cf. 7.1, 8.1).

(iil) T = A[b""]/A (cf. 7.1).

(iv) The polynomials P,,(y) generate the A-module Ty (cf. 6.1).

1.5.1f 4 D F,, then

() R = A[D,., i > 0] (cf. 1.1).

(i) Ext(G4(b), G, 4) = Ty (cf. 7.2,8.2).

(i) T = A[F]/A[F]b?~! (cf. 6.2.3).

(iv) P,_,(y) generates the A[F]-module T} (cf. 6.2.3).

1.6.If 4 O Z then

( 11 p['°gp"‘])Pm(y)eTR (cf. 6.3).
pEI(4)

1.7. Let A be another integral domain and ¢: 4 > A a ring
homomorphism. Let

¢*: Ext(G, (b), G, 4) > Ext(G; (9(b)), G, ;)

be the induced homomorphism. If either ¢(b) % 0 and A contains a field, or
ADQ, or 4 is a discrete valuation ring, or 4 is a field of characteristic
p >0, or A is a local integral domain which does not contain a field, then the
image of ¢* generates the target module (cf. 9.2, 9.3).

The two last results give an estimate on the size of the group
Ext(G,(b), G, ,) also when 4 does not contain a field.

Notations. A, b (recall b # 0 throughout), G,(b), G, 4, u (comultiplication),
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K, x,y, R, D,, T, T, P,.(»), F, TI(4) and also N, N,: (coinversion), f,
introduced below are fixed in the note. Since Gx(b) = G, x We write
K[G,(b)] = K[t,t™']. We assume (without loss of generality) that x,y €
A[G,(b)] C K[G,(b)] are given by x = ¢!, by + 1 = . We denote by ¢ the
coinversion in K[t,¢7'). Itis given by «(f) = ¢t~ L, Wt ™) =t, x) = by + ],
«(y) = — xy. We denote by deg P(y) the degree of a polynomial P(y) and
by deg, P(y) (the degree modulo A[y]) the highest power of y in P(y) whose
coefficient is not in 4. We denote by (') binomial coefficients, i.e.,

m < m i m—i
(4 3ym= 3 (M
i=0
and we assume that () = 0 for i < 0 and i > m. We denote by Z, Z*, N, Q
the set of integers, nonnegative integers, positive integers, rational numbers
respectively.

2. Initial interpretation. Let N be the 4-module of polynomials Q (x, y) €
K[x,y]/x(by + 1) = 1 which satisfy

p(Q(x») — Q(x,y)®1 - 1® Q(x,y) €EA[x,y] ® A[x,y]. (2.1)
Let further N = A[x,y]/x(by + 1) =1 C N.

ProposiTioN. Ext(G,(b), G, ,) = N/N.

PROOF (W. MESSING). Let G be the middle term of an exact sequence of
commutative A-groups

1-G, ,»G->G,(b)—>1

Since the scheme G, (b) is affine and since H'(X, G, ,) = 0 for X affine (cf.
[2, 111, §4, 6.6]) we have H'(G,(b), G, ,) =0 whence it follows that the
projection G — G,(b) admits a regular section. (In particular, G =~ G,(b) X
G, 4 as schemes and so G is affine.)

Now [2, I1I, §6, 2.4] says that Ext(G,(b), G, ,) =~ H %(G4(b), G,, A)sym» the
set of symmetric two-cocycles modulo boundaries. A two-cocycle is a regular
map

f: G4 (b) X Gy (b) > G, 4-
Since G, 4 = Al,, we can consider f as an element of 4[G,(b) X G,(b)] =
A[G,4(b)] ® A[G4(b)].

Since any extension of G, x by G, x splits, i.e., H %(Gg(b), G, k) = 0 (cf.
[1, XVII, 5.1.1(d)]), we have f is a coboundary over K, i.e. there is g €
K[G,(b)] such that f = 8g. If, on the other hand, g € K[G,(b)] is such that
8g € A[G,(b)] ® A[G,(b)] then &g is a cocycle and it is symmetric: dg €

Zszym(GA (b)9 Ga,A)'
Therefore we can identify Z2 (G,(b), G, ,) with 8(K[G,(b)]) N

sym
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(A[G,(b)] ® A[G,(b)]). Note now that
8: K[ G, (b)] - K[ G, (b)] ® K[ G, (b)]

i;)given by (8(8)(s1, ) = g(s15)8(s1) " 'g(s) " or fg = pu(g) —g®1 -1
g.

We wiite K[G,(b)] = K[G,, ] = K[t, r™"] with p()) = t® 1, (™) =
17 ®t . Letg=3at" . Thendg = p(g) —g®1-1®g=3ar' @1 -
201" ®1—-1@Zqt'. It follows that 8g #0 for g #0, g € K[G,(b)].
Therefore we can identify Z2, (G, (b), G, ,) with

N = {g € K[G,(b)] |58 € A[ G,(b)] ® A[ G,(b)]}.

Now the set of coboundaries is 8 (4[G,(b)]) or with the above identification
simply N = A[G,(b)] C N. This concludes the proof of our assertion.

3. The beginning of computations.

3.1. LeMMA. (i) Every Q(x,y) € K[x,y]/x(by + 1) = 1 can be expressed in
the form P (y)x™.

() If P(y)x™ = P(y)x",m > n, then P(y) = P(y)by + 1" .

(iii) If P(y)x™ € Alx, yl/x(by + 1) = 1 then P(y) € A[y]

@) If x" ® x"(S; P(») ® Pyu(») € Alx, y)/x(by + ) = 1®
Alx, y1/x(by + 1) = 1 then SP,,(y) ® Py(») € A[y]® 4y}

Proor. The first two assertions are evident. The third and the fourth ones
follow from

3.1.1. LemMa (W. MEssING). Let f(x,...,X,) € Alx), ..., x,] and
f©,0,...,0) € A*. Let g(x;,...,X,) € K[x,, ..., x,) be such that f° - g €
A[xy, ..., x,). Then g(x,, . .., x,) € A[x}, ..., x,]

PrROOF OF LEMMA 3.1.1. If s < 0, then there is nothing to prove. Suppose
that s > 0. Then it is sufficient to consider the case s = 1 (otherwise we
replace g by f°~'g and apply induction on s). So let s = 1. Let x9 (where
g =(qy - - - » q,)) be the product of x;’s to the g;th powers. Suppose that x" is
the term of smallest total degree in g whose coefficient a, does not belong to
A. But the coefficient of x” in f- g does belong to 4. This latter coefficient is
congruent mod 4 to f(0, . . ., 0)a,,ie.a, € 4,2 contradiction.

3.1.2. THE PROOF OF LEMMA 3.1 CONTINUED. In case (iii) we apply Lemma
3.1.1 with n = 1, f(x,) = bx, + 1. Indeed our condition means P(y) - (y +
1)™™ € A[yly+1 (= localization of A[y] at (by + 1)). This means that
P(y) = P'(y)by + 1)? with P'(y) € A[y]. So there is nothing to prove if
g > 0.If g <0, then P(y)by + 1)77 € A[y] and we are in conditions of
Lemma 3.1.1.

In case (iv) we consider 3 P;;(y) ® P,,(y) as a polynomial P(y,, y,) in two
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variables. Then we have

P(yuyl): (by, + 1)_m(b)’2 + 1)_ne A[yl,yz]by.ﬂ,byzﬂ
and we argue as above using Lemma 3.1.1 with f(x,, x;) = (bx; + 1)(bx, +
1).
3.2. Lemva. p(P(»)) = Z;50(by + 1YPU(y) ® y'.

PrOOF. The expression is linear in P (y). Hence it is sufficient to check it
for a basis of K[y]. We have u((by + 1)) = (by + 1)™ ® (by + 1)™. On the
other hand ((by + 1)™)1 = b'(™)(by + 1)"~". Hence the right-hand side of
the formula has the form

S by + 0 (T )ty + )@y = 3 by + )"0 (T )i
i>0 i>0
=(by + )"® (by + ™.
3.3. LEMMA. Let Q(x,y) = P(y)x™. The condition Q(x,y) € N is equiva-
lent to the following condition

-2. D(P)(»)®y' = ((by + )" — 1) ® P(»)

—P)®((y+1)"-1)-PO)®1€4[y]®A4[y]. (33.1)
In particular, P(0) = 0, and Ty C Ext(G,(b), G, ,)
PROOF. We have
W(P()x™) = P(3)x" ® 1~ 1® P(y)x"
=x"®x"(u(P(y)) — P(y)® (by + D" =y +1)"® P(y)).
By Lemma 3.1(iv), (2.1) takes the form
p(P(») - P()®MBy +1)"—(by+1)"® P(y) €A[y] ® A[»].
We have further
p(P(»)=P(»)®1+ El (by + 1)Pl(y) ® y’
=P(»®1+ ;} D,(P)(y)®y' + §. PO ®y

=P(y)®1+ 21 D,(P)(y)®y'+1®(P(y) ~ P(0)

whence our assertion follows (the inclusion of Ty in Ext(G,(b), G, ,) being
the case when m = 0).

3.4. Let ¢ be the coinversion in K[t,¢t7'], t)=t~!, (t™ ") =1t It is an
automorphism of the ring K[¢t, t™']. We have «(x) = by + 1, (y) = — xy.



ON A CASE OF EXTENSIONS OF GROUP SCHEMES 177

Thus ¢ determines the multiplication by —1 in the group scheme G, (b). In
particular, ¢ acts on Ext(G,(b), G, ,) and, since Ext is an additive functor we
get the following:

LEMMA. ¢ acts as (— 1) on Ext(G4(b), G, ).

3.5. Denote by N, the A-submodule in N which consists of Q(x,y) €
AL~ Ix, 1/ x(by + 1) = 1.

PROPOSITION. Ext(G,(b), G, 4) = N,/N. In particular, Ext(G,(b), G, ,) is

the inductive limit of submodules annihilated by powers of b.

PROOF. Let x"P(y) € N, P(y) = 2_, ay'. Applying ¢ (cf. 3.4 above), we
can assume m < r. Then for r > 1 the coefficient of y” ® y" in (3.3.1) is a,b”
(this term is contained only in D,(P)(y) ® y”). Hence by 3.3 we have
ab” € A, that is, b’x™P(y) can be represented modulo N in a form x™R (),
where deg R(y) < deg P(y). By induction on r = deg P we see, using 3.1(ii1)
that b™P(y) € A[y] for some M, as asserted.

3.6. COROLLARY. If b € A* then Ext(G4(b), G, 4) = 0.
4. Structure of R = A[D,, i > 0].

4.1. THEOREM. (i) D,D; = =\ _,(\)¢;')b'~'D;, .
(i) D,D;, = D;D,.
(i) R=A[D,,i=0,1,...,;p € I(4)].

PROOF. (i) One has (where we set r = i — )

((by + l)jP[jl(y))lil _ io(;-)bs(by + l)j_s- JU-1)...(J—-s+1

i!

1 di+j—sP(y)

j' tl)/i+j_s
i U= s )
=2 (e ;
. G+i—9...(J+)D . d'*V P (y)
G+i-s9)! &t

( ‘)b’(by + l)j—s(j + ll - S)P[i+j—s](y)

Ly ~

— go(;')bi—r(by + l)j—i+r(j -ll- r)P[j+r](y)

r

T RE T

]
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Now
(DDP)(y) = (by + 1] (b + 1YPU(3) " = [(by + 1/PV(3)]) -0

= 2 ( )(J + ’)b. r[(by + 1)I+’P[_/+r](y)]

r=0
S IOUE
A0 MR
e
ST G
whence (i).
(ii) Using the identity
) =G0
one has

0 —
j¥r\io, _ ( i )(_] +i- ) m
DD, = Z)O( )( )b D, ,,.2.2.- . " )6 Dissm

(by our convention on binomial coefficients, the terms with m > min(i, j)
vanish and this equals)

_ j i+j- m _ J j)(i+’) iy _
DY PR G e A 0) (Ml BT T

(iii) Suppose that n is not a power of a prime in II(4). Let us show that
D, € A[D, ..., D,_,]in this case. Then (iii) evidently follows.

For every pair i,j EN such that i+ j=n we have D,D,=(})D,
mod ¥, ., AD,. It follows from our choice of n that GCD; ¢y, ,— y{(})} is
invertible in A. Hence there exist a;, ..., a,., € Z such that
2o<icn @D;D,_; = eD, mod X, , AD, where ¢ € A*. Hence D, €
A[D,, ..., D,_,] as asserted.

4.2. COROLLARY. R ® A /(b) is a quotient of the free divided power algebra
on one generator.

Evident.
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4.3. COROLLARY. nD, = D\(Z7Z3(— bYD,_;_))-

PROOF (BY INDUCTION). Suppose that our assertion is proved for n and let
us prove it for n + 1. We have by 4.1(i)

D\D, = (n+ 1)D,,, + nbD,.
By the induction hypothesis we have

D\D, = (n + 1)D,,, + bD, ("f(—b)"p,,_,._,)
i=0

whence our assertion.
4.4. COROLLARY. (n!)D, = D] mod bR.
The proof follows immediately from 4.3.

S. Action of R on A[y].

S.1.LeMMA. () D,(y™) = (M)y™"(by + 1Y ifm > r.
@) D,(y) =y +1)y - 1.

(i) D,(y™) =0if m < r.

Evident.

5.2. LeMMA. (D, P,)(y) = (—»)™.

PrOOF. One has

(by + 1)—[1» g C) } =y + Db 3 () (- )

i=1 i=1

—b-'"( S~y - §](—by)") = —b"+ b (—by)"
i=1 i=
Hence

(D\Pn)(2) = (b + DP () - P“'(O)—( -»)"
as asserted.

5.3. LEMMA.

(@) n(D,P)y) = (=1)"Zi5(=bY )y "y + 1y if n <
m.

(i) m(D,, P, )(y) = (=1y"(by + )"b~" — (= 1)"b~".
(iii) (D, P, )Xy) =0if n> m.

Proor. Using 4.3, 4.1(ii) and then 5.1 we getforn < m
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n(Dan)(y)=Dl(ni( b)an i— I)P (y)

i=0

- ("go(—b)’b,,_i_,)(—y)’"

n—1
m i m m—n+i n—i—
= (=™ (,20(—1») A P O )
This proves the first equation. The remaining equations are evident.

6. Computation of T.
6.1. The case Q C A.

PROPOSITION. The A-module Ty, is isomorphic to A[b~"]/A. The images of
polynomials P, (y) generate Ty over A.

PrOOF. By 4.1(iii), R = A[D,]. By 5.2 we have P,(y) € Tz. Take now
P(y)=2",ay’ € Tg. Then
(by + 1)PY(y) — P0) € 4] y]
implies that mba,, € A where a,, is the coefficient of the highest power of y.
Hence
deg[ P(y) + (= 1)"" 'mba, P, (y)] < deg P(y).
Applying the same method m times we get P(y) € 27, AP( y), e, Tg =
2,51 AP,(y). This proves the second assertion of Proposition 6.1.

Note that bP, (y) = P,_,(y) mod A[y]. It implies that Ty is the direct
limit of A4/(b’) with respect to inclusions A /(b )y —> A/(b'*") given by
A>Ab’. This direct limit is clearly isomorphic to A[6~"]/ 4.

6.2. The case ¥, C A.

6.2.1. An expression for (D,.P)(y). To avoid, at least partially, what the
referee called a typographical nightmare we use notation Q = p?. Take
P(y) =27, ay' and set (DyP)(y) = Z7., b,y". Suppose that Q = p? <
(otherwise the result is zero by 5.3). We have

(DoP)(y) = (by + 1)2P1?)(y) — P12)(0)
= (b9 2 + 1)P'2)(y) — P'%0)

PR P

i=Q i=Q

(e S (oo (k)

+ § ( é)a,-b 9,

i=m—Q+1
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This givesusfor I < (p + d)Q < m — Q

(p ; d)Q)an(m+d)Q+ ((m + c; + I)Q)a(wm@

Using the relation (7 59?) = d (mod p) we get

bip+aro.a= d%prarot (d + Dagprarng for1 <(p +d). (+)
It is assumed in this relation that ¢, = 0 for i > m.

bip+aro, 4= (

6.2.2. LEMMA. If P(y) € Ty then (i) a,y € A for (r,p) =1,r > p and
(i) b %, , € A forr=1,2,...,p — 1.

PrOOF. Since P(y) € Ty, we have b, € A for all i and g. Applying
successively ( * ) from 6.2.1 with d =0, 1,...,p — 2, we get (i). Applying
now ( * ) from 6.2.1 withr =0andd=p — 1,p — 2, ..., 1 successively, we
get the second relation.

6.2.3. PROPOSITION. Assume ¥, C A. Then Ty is an A[F]-module isomorphic
to A[F]/A[F)b?~". The polynomials P2 |, q > 0, generate Ty over A.

PrROOF. By 5.1(iii), R = A[D,,, i =0, 1,..., ] Itis clear that (D, PjQ)(y)
=0ifj€[l,p — 1]and i # q. For i = g we have (D,P2)(y) = (—1Y%*?
forj e[l,p — 1]

Indeed, we have

PC(y)=b"20*" 3 (—by)i .

jzi>1
So
[ ] — . l i i— .—
(p2) %0y = bo00rn 5 (G -p2yeciin
j>i>1
= p—QU+D 2 (_b)Qin(i—l)
j>ix1

whence (cf. 5.2)
(DeP2)(») = (692 + 1(22) ') = (P2)*'0)

= b‘Q(i+1)( 2 (_I)QibQ(i+l)yQi + (_I)QibQ'yQ(i—l)) — p9. (—I)Q

j>ix1
= b—Q(i+l)(_1)0JbQ(i+1)y@' = (_I)Qiyoj.
So P2(y) € Ty forallg > Oand everyj € [1,p — 1].

Assume now that P(y) € Ty, m = deg, P(y), a,, & A. We can assume at
once that m = deg P(y). By 6.2.2(ii) we have m = dQ,d €[l,p — 1],q > 0.
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Using ( * ) from 6.2.1 we get b, , = d- b%,, € A whence it follows that

deg[ P(y) — APZ (y)] < deg P(»)

for some A € 4. Applying now the induction on deg P (y) we see that P2(y),
i €[l,p—1], ¢ >0, generate Ty. Since b'P,_(y) = P,_,_;(y) mod A(»)
for 0 < i < p — 1, we get that PPQ_,( »), g > 0, generate Tx. This proves the
last assertion.

It follows now that Ty is an A[F]-module with one generator P,_,(y).
(Recall that we set F(P(y)) = PP(y).) Since b*~'P,_\(y) E Aly], T is a
quotient of A[F)/A[F1b?~". If =5_, NF'P,_\(y) € A[y] one shows induc-
tively that each A, is a multiple of b~V and thus establishes the first
assertion.

6.3. The case Z C A.

PROPOSITION. 1, ¢ 114 p"% ™ P,,(y) € Th.

Proor. By 5.3, (nD,P,)y) € A[y] for all n. Since (D,P,)y) =0 for
n > m, we have only to check that n~'- I, <y, p™% ™ € 4 for n < m.
This is clear.

6.3.1. REMARK. If p is the smallest prime in II(4) and p|b?~' then
P,(y) € Ty (since (D,F,)(y) = (—y) and (D,P)») = (—1P[(by + 1y —
11/ pb). .

7. The kernel of the map T + (T — Ext(G,(b), G, ,). Denote this map by
7 (cf. 3.4 for the definition of ).

7.1. LEMMA. Ker 7 is generated by elements P + (P, P € Ty.
ProoF. This is evident, as ¢ acts as — 1 on Ext(G,(b), G, ,); see 3.4.

7.2. PROPOSITION.

med (=) (5"
s CENCT)

Jj=1 J

0, d=0,1,...,m— 1L

REMARK. I was not able to prove these identities directly, nor to find them
in books. So the proof below can be considered either as the proof of these
identities (by one who does not know them) or as an alternative proof of 7.1
in the case A D Q (by one who knows them).
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PrROOF. Take A = Q[[b]], b an independent variable, and use 7.1 with
P = P, Wehave

Pp(y) + Pp(—) =b""" '[ i~Y((-byy +(bxy))}

= Ir"'"'x"é",l T =by) [y + )7+ (= 1)y + 1))
Jj=0

= 1;—"'-'x"é",l i—'(—by)"[é ( )b/yf +(=1) 2 ( j i)b!ij

= o s 'S G- ()« (m )|

Jj>1

The condition P, (y) + P,(—xy) € A[x,y]/(by + 1)x =1 is now equiva-
lent to

J—1 .
oY Ni-r(m m-—j+r\)_ -
20-n (( 1y (,)+( J )) 0 forj=1,...,m.
Sets = j — r,d = m — j. Then we finally have

S v (/)
=és ((_')(J—s)““(';—s))
=3 (0w )+ (n 5 )

=S )+ (")

s=1

8. The surjectivity of 7 in the equicharacteristic case.
8.1. The case Q C A.

PROPOSITION. 7 is surjective.

PRrOOF. Let P(y)x™ € N and let d = deg P(y). If d < m then P(y)x™ €
K[t™'], hence P(y)x™ € Tg) and we are done.

Therefore it can (and will) be assumed that d > m. Write P(y)=
3¢_o ay’. Consider in (3.3.1) the coefficient of »¢ ® y. It is contained only in
the summands D(P)(y) ® y and P(y)® ((by + 1y" — 1). Corresponding

coefficient is dba, — mba, = b(d — m)a,. It follows now from 3.1(iv) that
ba € A.
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8.1.1. LEMMA. P,(y)(by + 1)" is equivalent modulo A[y] to a polynomial of
degree d with highest coefficient (—1)?/b)- ((—1D)"/(d- (;;"))).

Before proving Lemma 8.1.1 let us show how our proposition follows from
it. One has P,(y) = P,(y)(by + 1)"x™ € T C N. Subtracting an
appropriate multiple of P,(y)x™ from P(y)x™ and using ba, € A we get a
polynomial of lower degree and our assertion follows by induction, since we
get at last polynomials of degree d < m.

8.12. Proor of 8.1.1. Since bP,(y) = P,_,(y)mod A[y], we have
deg,(P,(y)(by + 1)) < d. Let o, ;- b~ be the coefficient mod 4 of y¢ in
P,(y)(by + 1). Since bP,(y) = P,_,(y) mod A[y], we have 0,,, ; = 0, ; +
0, 4 Clearly oy , = (— 1)?- d~'. We can now apply induction on i (the case
i = 0 being checked). We have

Oiv1,d =0 gt 0; 4

i+d i! i!
=(=D dd—1)...d—1) ~(@d=-1)...(d—i—1)

(=) d—i-1-d)i
dd-1)...(d—i-1)

(i + 1)
dd-1)...(d-i-1)

— (_l)i+d+l

as asserted.
8.2. The case F, C 4.

PROPOSITION. 7 is surjective.

We use below notation M = p”, Q = p? (cf. 6.2.1).

8.2.1. PrROOF. Let P(y)x® € N. Replacing, if necessary, s by p” (> s) and
P(y) by P(y)(by + 1*"~* we can assume that s = p”. Then (3.3.1) takes the
form

2‘ (DiP)(y) ®y' — bMyM @ P(y) — P(y) ® b™™
” ~PO)®1€A[y]®A[y] *

Let us use the notations of 6.2.1 for P(y) and (Dyp)(»).

8.2.2. LeMMA. () b, € A fori #+ M, q # n.
(ii) b;, — b™a, € A fori #+ M.

(ii1) by, , — bMaQ € A for q # n.

(iv) by , — 2bMay, € A.
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PROOF OF LEMMA. We use ( * ) from 8.2.1. If i # M, ¢ % n, then (...)y*
® y? is contained only in (Do P)(y) ® 9, whence (i). If i # M then
(...)y" ® yM is contained only in (D, P)y)®y™ — P(y) ® bMyM
whence (ii). If g # n, then y™ ® y2(...) is contained only in (Do P)(y) ®
y2 — bMyM ® P(y), whence (iii). An expression of the form Ay™ ® y™ is
contained in (Dy,P)y) ®y™ — bMyM @ P(y) — P(y) ® bMyM, whence
@v).

8.2.3. LeMMA. If ¢ > n then () a,yp €A for (r,p) =1, r > p, and (i)
b=, , € A forr €[1,p — 1].

PrOOF OF LEMMA. Apply 8.2.2() and (*) from 6.2.1 successively with
d=0,1,...,p — 2 and get (i). Apply now 8.2.2(i) and ( * ) from 6.2.1 with
r=0andd=p—1,p—2,...,1 successively and get (ii).

8.24. LeMMA. If g # n then () a,p € A for (r,p) =1, r > p and (ii)
b*»="%,, € A forr €[1,p — 1].

ProoF oF LEMMA. By 8.2.3 it is sufficient to prove the assertion for g < n.
So we shall assume that ¢ < n. If i < M the same proof as in 8.2.3 goes
through (since we use only 8.2.2(1)).

If i = p” we use 8.2.2(iii). It gives us b,, , — b™a, € A. But since Q < M,
we have by the previous paragraph (with i = Q, i.e. r = 1) that 5*~ "%, €
A. Hence 8.2.2 is reduced to by, , € A and the proof goes through for the
remaining values of i

8.2.5. LeMMA. If ¢ > nand rp?™" + d > 1 then (d — 1)bMa, 5, 4 + (d +
Da.gi@enm € 4.

PrOOF. In (%) from 6.2.1 set g == n, r:== rp? "' and substitute the
resulting expression in 8.2.2(ii) (where we put i == (rp?~" + d)p"). The
result is our assertion.

8.2.6. LEMMA. If ¢ > nand r > 0 then
Goram €A ford 20,1 (modp?™").

Proor. We will prove by induction that if i < g — n then a,,, 4 € 4 for
d=0,1 modp'*!. To prove our statement for i = 0 (the beginning of
induction) we set in 8.2.5 successively d=jp + 1,jp+2,...,(j+ Dp — 2
for fixed, but arbitrary,j > 0. We get then that

Goram €A ford=jp+2,...,(j+1)p—1,

that is for all d except d =0 or d =1 (modp). Thus the inductive
assumption holds for i = 0.

Suppose it holds for all i < j and let us prove it forj + 1 (if j + 1 < q —
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n, otherwise we are done). We have to prove that
doram €A ford =0,1(mod p/*'),d 2 0, 1 (mod p/*?).
Since j + 1 < g— nwesetin 823G):q:=n+j+ 1, r:= pi "7 14
d (with (d, p) = 1). Then we get that a, € 4 with s = rp? + dp"*/*!, d > 0,
(d, p) = 1. In particular (when d = 1) we get our inductive statement with
d =0 (mod p’*"), d 2 0 (mod p/*?). Substituting this result in 8.2.5 we get

that a,;, 4 € A also for d =1 (mod p/*'), d 2 1 (mod p/*?). This con-
cludes the inductive step.

8.2.7. COROLLARY. Let m = deg, P(y). Then m = ip? + dp" with F € [1, p
— 11, § > n. Moreover:

@ IfG>nthend=0o0r 1.

() IfG=nthend + FE€[2,p — 1].

We will use notation @ for p9.

PROOF. If m < p" = M then P(y)x™ € Ty) and we are done. So take
m>p". Letm =2y, rp', i €[1, p — 1], be the p-adic expansion of m. If
r; # 0 for i < n then 8.2.4(i) yields a, € 4, a contradiction. So r, =0 for
i<n,ie, m—r(;p"+4v" We set 7 = r;. Then1fq>nwehaveby826
thatd =0or 1. If § = n then m > p" 1mp11esd+r€[2p— 1].

8.2.8. LEMMA. Let G > n. Then
(1) an;Q- € A.

(ii) —b a- + a;5.m € A.
(iii) b€ ,Q+M €A

ProoF. To get (i) set r = Q, d = Fin ( *) from 6.2.1 and substitute it in
8.2.2(i). To get (ii) set d := 0in 8.2.5. To get (iii) apply (i) to (ii).

8.2.9. Elimination of the case § > n, d=1. Using 8.2.8(iii) we can find
A € A such that

degA[P()’) - }\Pfé (»)(by + I)M] < deg, P(»).
So in this case we can lower the degree of P(y). )
8.2.10. Elimination of the case § = n. In this case m = (F+ d)p" with
F+def2p—1](f. 827. By 8.2.2(ii) (with i .= (F + d)p" > p") and by
8.2.5 (where r:== 0,d = F+ d) we have (F + d — 1)b™, a(,+d)M € A, since

a; =0 for j > m. Since F+d—1+#0in F, we have b MaGeaom EA. Tt
follows now from 8.1.1 that

deg,[ P(») — Moy + 1)"PH; (»)] < deg, P(»)

for an appropriate A € 4.

8.2.11. Elimination of the case § > n, d = 0. We have in this case m =
7pi(= FQ). We get at once from 8.2.8(ii):

(a) bMa;; € A.
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Let us replace P(y) by P(y)= P(y)by + I)Q”M and (consequently)
P(y)x™ by P(y)x®.

(b) LeMMA. deg, P(y) < deg, P(»).

ProoF. If 7 > 1, apply 8.2.6 with r == 7 — 1, g == §. Then we have from
8.2.6:

aG-1)g+am€ A forl < d <pi=n

Therefore there is only one term of P(y) of degree > m which may be

outside A[y]. It is a;5 b2~ MyG+DG-M Byt it also belongs to A[y] by (a)
above and since 0 — M > M

If #=1,4 > n + 1, then we have from 8.2.6 with r := p—lqg=4-1
that

a(p_l)Q+dM€ A if 1 < d < p‘;—”_l.
So this case is completed in the same way as the previous one.
If = 1and § = n + 1, then we have from 8.2.5 with r := 0 where we put
successivelyd = p — 1, p — 2, .. ., 2 that (compare with 8.2.3(ii))
bMe=Dg €4 fori=2,...,p—1.
Now we have

P() =( 2 aiMy"M)(b”yM +1)"!

p>i>1

=( 2 aiMyiM)( 2 (P_l)bMJyMJ)
p>i>1 p—1>j>0 J

ST () ey T P
2p—1>s>1\i+j=s J

We have to show that if s > p then =, ,_(*; ")bMa,, € A. Butif s > p we
Just proved that g, M € A in this case.

(c) Thus we have P(y)x2 = P(y)x™ and deg, P(y) < 7Q. By 8.2.7 we
are in conditions of 8.2.10 and therefore we are done.

8.2.12. END OF THE PROOF OF PROPOSITION 8.2.1. We have shown that in all
cases we can_assume (possibly changing M) that for P(y)x™ there exist
A € 4 and P2(y) such that

deg,(P(y) = APE (y)(by + 1)) < deg,, P(»).

Now the same argument as in 8.1 (after Lemma 8.1.1) completes the proof of
Proposition 8.2.1.
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9. Base change.
9.1. An auxiliary lemma.

LEMMA. Let M = p"~ 1.

Q)] MPpM—l(y) € Tk.

(ii) MP,p_(y) = P (y) mod p.

(i) p(MP,,_(¥)) = 1@ MP,,, (y) + MP,y_1(y) ® 1+
2p>i>0P_1(‘?))’(11—0[” ®yiM mod (pA + bA).

PROOF. The first assertion is contained in 6.3 (with m = p” — 1). We have

MPM—l(y)=b—pM 2 (_b}’)]‘ﬁ_1

P

M>i>0
=56 3 (—by)’™; 'modp
p>j>0
M
=\b? Y (—by)j~'| modp
p>j>0

= PM(y) mod p.

This proves (ii).
Using (ii) we see that it is sufficient to prove (iii) only in the case M = 1.
We have then (using 3.2 and 5.3)

WP (D) = Poi(N®T—1® P, (y) = ZO(Dan-l)(y) ®y"

=(_1)P*| 2 l( 2 ( P__l l)(_b)ryp—n+:(by+ l)nxl)®yn
n>12>0

p—1>n>0 n n—1

® yr!

_lp*l _lp—l
pl—l'[( (1 = ;

=(-1"' 3 1(1"‘)vr"®y"+(—1)l’*'y®yp*' mod bA

p—isns0 P \n—1/"
- 1!
=(=n! L o P=" ® y" mod bA.
. p>§>o n (p—n!(n-1) y y© mo
Now it remains to remark that (—1)?~! =1 (mod p) and

1 (p— 1! _ (-1 l(p)

n)

n(p-nl(n-10) (p-ninl p

9.2. The case p(b) = 0. Let A belong to one of the following classes of
rings:

@42Q.

(b) A is an integral domain containing Z with a unique prime, say p, which
is not invertible in A4.
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(c) 4 is a discrete valuation ring with residual characteristic p > 0.

(d) 4 is a field of characteristic p.

Let A be an integral domain, b € 4, b # 0, and ¢: A4 —>A bea ring
homomorphism such that ¢(b) = 0. (In particular, ¢,(G,(b)) = G, ;.)

ProOPOSITION. The image of ¢*: Ext(G,(b), G, ,) - Ext(G, ;, G, ;)
generates its target as an A-module. Moreover, if @ is surjective then @* is
surjective.

ProoF. Suppose first that we are in cases (b), (c) or (d) with a unique prime,
p, noninvertible in A. Using 9.1(iii) we see that our result follows from [2,
I1.3, 4.6] in the case (d) and from [4, 4.7, 4.7.3] in the cases (b), (c). f 4 D Q
then Ext(G, 4, G, ;) = 0 by [3, XV, 3 (iii)] and there is nothing to prove.

9.3. The case p(b) # 0. Let A be an integral domain which contains a field,
A be an integral domain and ¢: 4 - 4 be a homomorphism such that
o(b) # 0.

PropoOSITION. Ext(G;(¢(b)), G, ;) is generated by the image of ¢*. If ¢ is
surjective, then @* is also surjective.

Proor. By 8.1, 8.2 Ext(G;(9(b)), G, ;) is generated by the image of Ty ;.
If A2 Q, then the P,(y) generate Ty ; (by 6.1). By 6.3, the P, (y) are
certainly contained in the image of @, whence the assertion.

~If A>D F, and 4 D F, then we are done by 6.2.3. Consider the case
A 2 F,, A 2 Z. Then we are done by 9.1(i), (ii).
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