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ON SUBALGEBRAS OF SIMPLE LIE ALGEBRAS
OF CHARACTERISTICp > 0
BY
B. WEISFEILER'

ABSTRACT. The main results of the paper are Theorems 1.5.1, II.1.3 and IIL.2.1.
Theorem 1.5.1 states that if a maximal subalgebra M of a simple finite-dimensional
Lie algebra G has solvable quotients of dimension > 2, then every nilpotent element
of H acts nilpotently on G. Theorem II.1.3 states that if such a simple Lie algebra G
contains a maximal subalgebra which is solvable, then G is Zassenbaus-Witt algebra.
Theorem II1.2.1 states that certain Z-graded finite-dimensional simple Lie algebras
are either classical or the difference between the number of nonzero positive and
negative homogeneous components is large.

In the present paper we study subalgebras of simple finite-dimensional Lie
algebras in characteristic p. We assume throughout that the ground field is algebrai-
cally closed of characteristic p > 7. In the case p = 3 there are counterexamples to
some of our results. In characteristic 5 most proofs do not go through, and
additional work does not seem to help.

In the study of simple Lie algebras in characteristic p it is important to establish
for each such an algebra L that there exists in it a maximal sublagebra L, which
defines a long filtration of L. This means that there is a nilpotent ideal L, # 0 of L,
such that L, acts nilpotently on L.

Our first aim is to establish that if L, does not define a long filtration, then L,
must satisfy certain conditions. Our result in this direction is Theorem 1.5.1 which
implies, in particular, that if L, has solvable quotients of dimension > 2, then every
nilpotent ideal of L, acts nilpotently on L. The proof of this result is based on
results of H. Zassenhaus and R. Block about representations of Lie algebras and on
ideas of V. Kac and I. L. Kantor about realizations of graded Lie algebras.

In trying to apply Theorem 1.5.1 one has to consider the case when a maximal
subalgebra L, has both nilpotent ideals and large solvable quotients. The simplest
case which comes to mind where both these conditions hold is that of a solvable
maximal subalgebra. Certain special cases of a solvable maximal subalgebra were
considered by several people, among them by J. R. Schue [11] and M. 1. Kuznetsov
[9]. We heavily use results and ideas of the Kuznetsov paper. Because of the
existence of a long filtration the question of classifying simple Lie algebras L with a
solvable maximal subalgebra L, is reduced to the question of classifying certain

Received by the editors April 23, 1982 and, in revised form, October, 1982.
1980 Mathematics Subject Classification. Primary 17BS50.
!Partially supported by NSF.

©1984 American Mathematical Society
0002-9947/84 $1.00 + $.25 per page

471



472 B. WEISFEILER

graded simple Lie algebras whose zeroth term is solvable. This turns out to be rather
hard. At any rate, the result is not surprising. It says that L is of type 4, or W,. This
is the main result, Theorem II.1.3.

Part III contains results about graded Lie algebras which are used in Part II but
which seem to have wider applicability. They were also removed to streamline (to an
extent) exposition in Part II. We also include in Part III some other results which
seem to be in the spirit of that part. In particular, we include Theorem I11.2.1 which
states that a simple graded Lie algebra G = &/__ /G, satisfying certain additional
conditions, is either classical (and then ¢ = r) or max(q, r) > ((p — 1)/2) min(q, r).

To conclude this account of the results of the present paper we would like to
mention that the recent work of R. Block and R. Wilson has resulted in much more
final structure results and will in the near future result in a classification of simple
Lie p-algebras.

We do not give indications of proofs in this introduction because the paper is split
into several parts which are fairly independent and straightforward. More precisely,
Part II needs only one result from Part I; however, it uses several auxiliary results
placed in Part III. Part III, the Appendix, is completely independent.

Notation and convention. We assume that the ground field k is algebraically closed
of characteristic p > 7. Our terminology is mostly standard. A Lie algebra L over k
is classical if it is a direct sum of simple classical Lie algebras.

For subspaces X, Y, Z,... of L we denote by <X Y, Z,.. > the subalgebra of L
generated by X, Y, Z,.... For subspaces X, Y of L such that [X, Y] C Y we denote
by ad, X the subspace of End, Y consisting of linear operators y — [x, y], x €
X; ad X refers to the case Y = L. A subspace X of L is nil if (ad X)4™ L = 0.

We are often led to consider divided power algebras. We denote by B,,(F) the
divided power algebra in m variables associated to a flag F (i.e., to a sequence of m
integers). In one or two variables we write

Bi(n)=k{x}= & dex U, By(g,r) = k{x, y} = ) extily o,
s 0:;<£r

The Lie algebra of special derivations of B, (F) is denoted W, (F). When we say
that L is of type W, it means that L is isomorphic to W;(n) for some n. The rings
B,,(F) have ring filtration (by total degree, for example, B, ,,(n) = &, _ . kx (1)),
This induces a filtration on W, (F) via W, (F)= {x € W,(F)|x(B,, (n)) C
B, ,.;(n) for all r }. Automatically W, (F)= W, _(F). We usually use C to denote
the maximal ideal of B, (F). Thus C = B, ,(F). Then W, (F)= {x €
W, (F)|x(C) < C}. Both B, (F) and W, (F) can be made into graded algebras via
B,(F)= @®B,(F), where B, (F),,, consists of homogeneous elements of total
degree i. Then W, (F), = {x € W, (F)|x(B,(F),) S B,(F),., for all j}. This
grading is called standard. If m = 1, then B,(n),, = kx") and W (n),, = ke,
where e = xUU*19,j = -1,0,..., 3ax/} = x/7U. In particular, [e_j,e;]=¢,_,,
leg, e,]1 = Je,.

Finally, we record some terminology and notation, related to Z-graded and
filtered Lie algebras (see [12]). A Lie algebra L with a sequence { L,} of subspaces is
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filtered if LD --- DL D LyD LD+ and [L,L]]JC L,,,. A Lie algebra
G= @,;-qG, is graded if [G,G] € G,,,. We call g the depth and r the height of
the graded Lie algebra. If L is filtered with filtration L, then the associated graded
algebra is G = &G, G,=L,/L,,,, where, for x €L,, y € L;, we define [x +
L,,y+L =[x p]+L,, ;. Thisgives G a structure of graded Lie algebra. If
G = @G, is a Z-graded Lie algebra, then M(G) is the largest ideal of G contained in

@ G,. It is defined constructively as

i<-2

MO(G) =0, M"*(G)= {x e @alx @ G,] c M'(G)},

1<-2 1>0

M(G) = UM(G).

It is easy to see that M(G) inherits a grading from G: M(G),= M(G)N G,,
M(G)= ® M(G),. Next, A(G) is the ideal of G generated by @,_,G,. It is also
graded, A(G) = @ A(G),;, A(G), = A(G)N G,. We have A(G), = G, for i <0,
A(G), = L[G,, G_,], etc.

PART I. MAXIMAL SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

The purpose of this part is to develop some techniques for working with Lie
algebras when there is no long filtration. The main result says that a maximal
subalgebra which has large solvable quotients cannot be too bad. Our main tools are
representation-theoretic (after H. Zassenhaus and R. Block) and those developed by
V. Kac and 1. Kantor in their study of graded Lie algebras.

We start by outlining rudiments of the representation theory of Lie algebras in
characteristic p > 0 after H. Zassenhaus. This permits us to naturally distinguish a
class of subalgebras of a Lie algebra which we call “bad”. In the case when a bad
subalgebra has large solvable quotients we are able to arrive at a continuation using
R. Block’s theory of differentially irreducible modules together with rudiments of I.
Kantor’s realization of graded Lie algebras.

Recall that the ground field is algebraically closed of characteristic p > 5.

1. Recollections on representations of Lie algebras (after H. Zassenhaus [16]). Let
G be a Lie algebra of dimension n over k. Let U(G) be the universal enveloping
algebra of G, let Z be its center, and let Z, (denoted o in [16]) be the subalgebra of Z
generated by k-1 and by Z N (G + kG? + kGP' + ---). Set G* = Spec Z,,. In
{16, p. 13 (top)] Zassenhaus establishes that G* = A" (an n-dimensional affine space
over k), and at the very end of the paper [16] he states that G* has a structure of a
vector space over F,. The additive structure of G* is described by him as follows. A
point / € G* is an algebra homomorphism /: Z;, — k. For every finite-dimensional
Z,module N we have a Fitting decomposition N = @,_.. N(/), where N(/) = {n
€ N|(a — I(a))¥™ P n = 0 forall z € Z,). If N = N(/) we say that N is isotypic and
write /,, for the corresponding /. Irreducible modules are automatically isotypic. By
[16, Theorem 12 and subsequent discussion] we see that a tensor product of isotypic
Z,modules M and N is isotypic and /ey = I}, + [y. Let us remark that every
G-module can be considered as a U(G)-module and, therefore, by restriction as a
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Z,-module. We call a G-module isotypic if it is isotypic as the Z;-module. We record
the results of [16] which were discussed above as

1.1. FAcTs. (i) In the center Z of U(G) consider the subalgebra Z, generated by 1
and Z N (Z2 kG ?"). Then Spec Z, has a structure of a vector space over F,.

(ii) For two isotypic G-modules M and N we have ly gy = I\, + I\, where the
addition is that of G*.

1.2. LEMMA. Consider G as a G-module via adjoint action. Then G is an isotypic
G-module and | = 0.

PROOF. Let G = ®,_,.G(/) (a direct sum of G-modules). Then each G(/) is a
G-module and, therefore, an ideal of G. Evidently, [G(/,), G(I;)] € G(I;) N G(I;) =
0 if I, # [,. On the other hand, by 1.1(ii) we have [G(],),G(/,)]c G(I, + 1,)
whence [G(]),G()] =0 if I # 0. Thus G = ®,,,G(/) is in the center of G and
G = G(0) ® G (a direct sum of algebras). Let M be an irreducible nontrivial module
for G(I), | # 0. Make M into a G-module by setting G(I')M = 0 if [ # I’. By 1.1(ii)
we have I em = lguy + Iy =1 + Ip. On the other hand, the action of G on M
determines a map G ® M — M which factors through G(I) ® M as M is a trivial
@, ,,G(I")-module. Thus we have /; ;g » = /), Whence [ = 0, a contradiction.

1.2.1. REMARKS. (i) M can be a module with trivial action as well.

(ii) A more explicit description of the group structure on G* would show directly
that /; = 0. But we avoid this approach.

1.3. LEMMA. Let n € G be nilpotent and let m be an integer such that (ad n)?" = 0.
Then n?” € Z,.

PROOF. Since ad y can be written in U(G) as ad y = L, — R, where L, (resp.,
R)) is the operator of left (resp., right) multiplication by y, and since L, and R,
commute, we have by the binomial formula

PINTE AP Y
(ad y)q = Zo(—l) ( i)L;—‘Riv = Zo(r-l) ( i)Lyq—:Ry:.
In particular, 0 = (ad n)?" = L_,» — R,,,~ whence n?"x = xn?" for any x € U(G)
Thus n?" € Z. But then n?” € Z N (TX.,kG?') C Z,, as claimed.

1.4. COROLLARIES. Let M be a simple G-module,n € G, (ad n)?" = 0.

(i) Then n acts on M as A - 1d ,, + (nilpotent operator). Denote this X by X »,(n).

(i) We have 1,,(n?™) = (x () ?". In particular, if 1,,(n?") = 0, then x ,(n) = (
i.e., n acts on M as a nilpotent operator.

PROOF. Since n?” € Z, it acts as a scalar on M. Let }‘1,." ..,A, be the eigenvalue
of n. We have, therefore, \)"=A8"=-..=A?" whence A, = A, = -+ =, ¢
claimed in (i). By definition of /,, we know that n?" — [,,(n”") is nilpotent. Th
1e(n?") = (X p(n))?". This proves (ii.

1.4.1. REMARKS. (i) Lemma 1.3 and its corollaries enable us to use conditic
Iy = 0: if I,, =0, then every nilpotent element of G acts on M as a nilpote
transformation.
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(ii) Actually x, considered as a function on the set of nilpotents of G suffices for
our purposes. It obviously possesses the properties we need: X yenv = Xar + Xn (f
M and N are “isotypic”) and x; = 0. We went to the trouble of looking at Z,, /,,,
etc., only because it seems to be the proper generality.

(iii) In the case when G is a p-algebra, the statements similar to those of the
present section are discussed in a paper of V. Kac and the author [13]. However,
even for p-algebras /,, may have different meaning here and in [13].

2. Bad maximal subalgebras. Let H be a subalgebra of a Lie algebra G. Let U(H)
be the universal enveloping algebra of H, and let Z be the center of U(H). Then we
have Fitting decomposition

G= @ G,
A€Spec Z
where G, = {y € G|(a — A(a))¥™Cy =0 for alla € Z}. Let 7: Spec Z — Spec Z,
= H* be the canonical projection induced by the embedding Z, — Z. Set G(/) =
& a(A)=1 G)\‘

2.1. DEFINITION. A subalgebra H of a Lie algebra G is called bad if G # G(0). (By
Lemma 1.2, H is automatically a proper subalgebra.)

Our aim in this section is to prove

2.2. THEOREM. Let G be a Lie algebra and let H be its maximal subalgebra. Suppose
that G contains an ideal G such that

(a) G is a simple Lie algebra,

(b) any minimal ideal of G coincides with G;

©G=G+H.

Suppose that H is a bad subalgebra of G. Then there are Z/p-gradings G =
®,.4,,0 and G = Qiez/péi of G and G such that G, C G,and ®

(i) G,=H,Go=HN G +0;

(i) G, = G,, G, # 0, for all i # 0;

(i) G;, i # 0, is an irreducible and faithful G-module;

@iv) [G G] ,+jforall(1 j)=#(0 0).
(Note that If G is simple then G = G.)

ProOOF. By Fact 1.1(ii) we have [G(/,),G(/,)] € G(!; + [;). Thus G(0) is a
subalgebra. We have H ¢ G(0) by Lemma 1.2. Since G # G(0) and since H is
maximal we have H = G(0). Now take / # 0 such that G(/) # 0. Then G(0) and
G (/) generate a subalgebra which is contained in @,ez G (il). Since H is maximal
and @ G(il) # H we must have that G = @ G(zl) Set G(tl) =GUl)yn G. Since G
is an ideal we have G = eG(zl). Since G=G + H and H C G(0) we have
G(il) = G(il) fori # 0.

Now let ¥ be a simple H-submodule of G(/). Consider the subalgebra G of G
generated by V. Clearly, G C G (since G(I) = G(H)c G). On the other hand, G is
spanned by commutators ¢(v,,...,0,) = [v (v, -~ -[v,_1, v,] -+ ]} with v; € V and
n€Z, n>1 We have c(v;,...,0,) € G(0) = H for all choices of v,...,v, € V.
Therefore c(v, vl,..;,vp) = [v, ¢(vy,...,v,)] € V for all v € V and allv, €V, i=
1,...,p. Therefore G is spanned by the c(v,,...,v,) withv, € V, p > n > 1. Now
note that H = G(0) normalizes G and therefore H + G is a subalgebra of G. Since H
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is maximal we have G = H + G. Therefore G is an ideal of G. By condition (b) we
have G C G, thatis, G = G. We can write the equality G = G as

(2.2.1) GGily=[v[v---[v,v]---]] (itimes), i<p,

First apply (2.2.1) and get that G(l) = V so that G(/) is irreducible. Now consider
22.p). If G(0) = 0, then (2.2. p) says that G is nilpotent, a contradiction. So
G(@0)# 0 and now (2.2.p) implies that G(i/)*# 0 for all i€ Z/p and that
[G(-1), C()] = G(0).

Since G(il) # 0O for all i we can apply the argument above to i/, i # 0, instead of /.
This gives us that all G(il), i # 0, are irreducible and [G(il), G(-il)] = G(0) for all
i#0.

Let us now show that H is faithful on each G(il), i # 0. Suppose that H is the
kernel of the action of H on G(/). Then [H, G(/)] = 0 whence by (2.2.i),p > i > 0,
we have that [H, G(il)] = 0, that is, H centralizes G. Since H is an ideal of H and
G = H + G, we conclude that H is an ideal of G. Thus A 2 G, a contradiction
(since [H, G] = 0 and G is simple).

Now we want to show that [G(il), G( jhl= G((i + j)I). First we remark that
[G(0), G(il)} = G(il) for i # 0. Indeed, since G(il) is irreducible for G(0), and G(0)
is an ideal of G(0), we have that [G(0), G(il)]= 0 or G(il). The first case is
impossible since G(0) is faithful on G(il).

Next (2.2.+) applied to jl instead of I, p > j > 0, says that [G(jI), G(mjl)] =
G((m + 1)j1) for all 0 <m < p. Since j # 0 we can take m = i/j, whence
[G(D, GG = G + D).

To conclude the proof we set G, = G(il).

2.3. REMARK. It should be rememberd that the indexing of G, depends on the
choice of /. We shall use this freedom later.

2.4. PROPOSITION. Let H be a maximal sublalgebra of a Lie algebra G. Suppose that
H is bad. Then

He=e,,,
(i) G, = H;

(iit) G(il), i # 0, are irreducible for H.

G (il) for somel € H*,

Proof of these statements is contained in the first part of the proof of Theorem
2.2

2.5. PROPOSITION. Let H be a maximal subalgebra of a Lie algebra G. Suppose that
H is not bad. Then every nilpotent element of H acts nilpotently on G. In particular, if
N is a nilpotent ideal of H, then N acts nilpotently on G.

Proor. If H is not bad, then /; = 0 (i.e. G = G(0)), whence our claim follows in
view of Corollary 1.4(ii); see also Remark 1.4.1(i).

2.6. REMARK. The first step of the proof of Theorem 2.2 can be seen as obtaining a
statement that a bad maximal subalgebra is the set of fixed points of a subgroup
scheme isomorphic to p, ( pth roots of unity) in the automorphism group scheme of
G. For classical Lie algebras G subgroups of Aut G isomorphic to u, were classified
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by V. Kac in [7]. Of course, the fixed point subalgebras are not bad in this case, but
nevertheless, the conclusions of Theorem 2.2 hold. One can also give a slight
“generalization” of Theorem 2.2 as follows.

2.7. THEOREM. Let B be a simple Lie algebra and let #be a subgroup scheme of
multiplicative type in Aut G. If the subalgebra corresponding to the trivial character of
¥ is maximal, then #’= ., and the conclusions of Theorem 2.2 hold.

3. Generalities about graded Lie algebras (after V. Kac and 1. Kantor). Our aim is
to establish that certain maximal subalgebras of a simple Lie algebra G cannot be
bad. To this end we consider a Z/p-graded simple Lie algebra G = @ _, p G, which
is generated by its subspace G_; ® G, ® G, (actually, in our case, in view of
Theorem 2.2, G is generated by G_; only). Such direct sum of spaces, satisfying
natural conditions which automatically hold in our case, was called a local Lie
algebra by V. Kac [5, 6]. He used local Lie algebras to study Z-graded Lie algebras.
In particular, he considered a Z-graded Lie algebra G = @G, with G, = G, for
i = 1,0, which is generated by G_; & G, ® -- -, but does not have graded ideals
intersecting its local part. This construction of V. Kac is a variant of the generators
and relations description of Lie algebras. I. Kantor in [8] gave a realization of the
algebra G. His realization is obtained by actually increasing the algebra G to a
certain universal algebra whose realization is quite easy to describe. However, to
save space we do not give here the exposition of results of Kac and Kantor but just
apply what is immediately useful for our purposes.

3.1. Consider again a Z/p-graded simple Lie algebra G = & G,, satisfying the
conclusions of Theorem 2.2. The map ad x: G_; - G for x € G, defines ad x as an
element of Hom, (G_;, Gy) = G, ® G*,. Thus we get a map G, = G, ® G*. This
map is injective for: (a) it is not zero because of Theorem 2.2(iv), and (b) its kernel is
a Gy-submodule which must be zero in view of (a) above and Theorem 2.2(iii). The
commutator between G, ® G* and G_, is given by [g ® v*, v] = v*(v)gforv € G_,,
v* € G* and g € G,,. We replace for a moment G_; ® G, ® G, by G_; ® G, ® (G,
® G*) and we consider the free Lie algebra generated by this subspace modulo
relations there; we call it F. We have: Fis Z-graded, F_, = G_;, F; = Gy, F; = G, ®
G*.. On the other hand, F_, = [F_,, F_,] which means that F_, is a quotient of the
G,-module of the skew-symmetric square of G_,. As p # 2 we can consider F_, as a
quotient module of G, A G_,, where G, AG_={A€ G, ® G |A"= -4},
(a ® b)' = b ® a. The commutator of v, A v, € G_; A G_; with G, is given by
[g, v, Av,]=gvy A vy, + v, A gu,, and with G, ® G* it is given by [g ® v*, v, A
v,] = v*(v,)gUv, — v*(v,)gv,. Indeed,

[g® v*,[v,0,]] = [[g ® v*, v,]v,] +[vi[g ® v*,0,]]

= [v*(0))g, v,] + [0y, v*(v,) g] = v*(v1) gv, — v*(0,) goy.
Now returning back to our G we identify G, with a G,-submodule of G, ® G*,.
Consider the subalgebra G of F generated by G_, ® G, @ G,. We have a surjective
map G — G which is an isomorphism on G_, ® G, ® G,. Let D_, C F_, be the
intersection of the kernel of this map with F_,. Since the map is injective on
G.,® G,® G,weseethat D_, = {4 € F_,|[G,, A] = 0}.
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We sum this up as

3.2. THEOREM. Let G = @ G, be a graded Lie algebra satisfying the conclusions of
Theorem 2.2. Then:

(i) G, can be identified with a Gysubmodule of G, ® G* with [g,, g, ® v*] =
(81, 8] ® v* + 8, ® gy* and [v, g ® v*] = -v*(v)g for 8, &, 8; € Go, V* € G
andv € G_;.

(ii) G_, can be identified with a quotient of G_, A G_, by D_, = {4 € G_| A
G_,|[x, A] = 0 Vx € G,}, where the commutator of G_; A G_, with G, ® G, is given
by

[g®v*, v, A v,] = v*(v,) 8o, — v*(v;) g0y

4. Generalities on ideals of the G,-term of a graded Lie algebra. Consider a local
Lie algebra of V. Kac, i.e., a direct sum G_, ® G, ® G, with G, a Lie algebra, G ,,
its modules, and with a map of Gy-modules [, ]: G,, ® G_; = G,. We assume that
[G.,, x]# 0 for 0 # x € G, i = £1. We make one further

4.1. ASSUMPTION. [G,, G_,] = G,.

Let K be a proper ideal in G,. For a K-module V we denote by V' (resp., by V)
the largest submodule (resp., quotient) of ¥ on which K acts trivially. The surjective
map [, ): G, ® G_, = G, of Gy-modules factors through G, = G,/K to give a
surjective map G, ® G_; = G,/K. As K acts trivially on G,/K we actually get a
surjective map (G, ® G_,)x = G,/K. Dualizing we get an injective map

(4.1.1) (Go/K)* = ((G, ® G_,)*)" = Hom (G, G*,).

4.2. COROLLARIES. (i) dim(G,/K) < dim Hom ,(G,, G*).

(ii) If G, and G_, are simple K-modules then diim(G/K) =1 and G, = G* (as
Gy-modules)

(iii) If G, and G_, are simple Gymodules, then diim(G,/[G,, G,)) < 1. Moreover,
G, = G* if G, # [G,, G,l.

PrROOF. (i) is a direct consequence of (4.1.1). In case (ii) we have
dim Hom (G,, G*) < 1, whence dim(G,/K) < 1. Since K # G, it follows that
dim(G,/K) = 1. But then Gy/K is a trivial Gy-module. Thus the G,-module map
G, ® G_, = Gy/K determines a G-invariant pairing between G, and G_,. This
pairing is nonzero because [G,, G_,] = G, and it is nondegenerate because G, and
G_, are simple Gmodules. Finally, (iii) is a partial converse of (ii). Namely, set
K =[Gy, G,]. Then Gy/K is a trivial Gy-module. Thus the image of (Go/K)* in
Hom x(G,, G*)) is actually in Hom (G,, G*). Since both G, and G_, are simple
Gymodules we have dimHomg (G,, G*) < 1. Therefore dim(G,/K)< 1. If
dim(Gy/K) = 1, then Hom (G,, G¥,) # 0, whence G, = G*.

5. On the derived series of a bad maximal subalgebra. The purpose of this section
(and of the first part of this paper as well) is to establish

5.1. THEOREM. Let G be a simple Lie algebra and let H be a maximal subalgbra of
G. If H is bad, then dim(H/[H, H)) <1 and [[H, H),[H, H]] = [H, H}. (Thus.
solvable quotients of H are at most one-dimensional.)
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We know that G is Z/p-graded, G = &, _, p G,, with G, = H. We have certain
freedom (cf. Remark 2.3) in choosing G_,. Let us choose G_, so that dimG_; > dimG,,
i # 0. Our strategy is to show that the assumption that H has solvable quotients of
dimension > 2 leads to a contradiction with the assumption dimG_, > dimG,,
i#0.

Denote H' = [H, Hland H” = [H’, H'].

5.2. LEMMA. dim(H/H') < 1.

PRrOOF. This follows directly from Corollary 4.2(ii1) and Theorem 2.2(iii) (Assump-
tion 4.1 is satisfied in view of Theorem 2.2(iv)).

5.3. PROPOSITION. Assume that H # H'. Then G_, is an irreducible H'-module.

PROOF. Suppose G_, is not irreducible for H’. Then it is differentially irreducible
with one derivation (as dim( H/H’) = 1). Therefore by R. Block [1, Theorem 2 or 2]
we see that G_, = U ® B, as an H-module. Here U is an irreducible H’-module,
B, = k[x,...,x,]/(x},...,x}), H" acts trivially on B,, and B, has no H-invariant
ideals. By R. Ree [10] (explicit in M. 1. Kuznetsov [9, Proposition 2.1]) B, can be
identified with an algebra of divided power series in one variable, B, = B,(n) =
k{x}, and the action of H on B, respects the structure of divided powers.

Now we look at F_, (in notation of §3.1). Let N = dimU and let u,,...,u, be a
basis of U. We have F_, = G_; A G_; so that a generic element b € G_, can be
written as

b= Z b:.:’.j.j'(ul’®x(l))/\(uj’®x(l))’
(1. 1Y<(y.J")
where b,.,._N, €k, 0<i,j<p"—11<i,j <N, and < is the lexicographic
order. For b € F_, we set

min(b) = min{(i, i')|b, ., # 0 forsomej, j'}.

5.3.1. LEMMA. Ler D_, be the same as in Theorem 3.2(ii), and let k{ x } be the set of
divided powers with zero constant term. Then

D,n(U®k{x} AU®k{x})=0.

Before proving this claim let us show how Proposition 5.3 follows from it. Since
G_,=(G_, AG_)/D_, it follows that U ® k{x} A U ® k{x} is mapped mono-
morphically into G_,. Thus

dimG_, > dim(U® k {x} AU® k{x})=13iN(p"— 1)(N(p"—1) - 1).

On the other hand, by our choice of G_; we have Np” = dimG_, > dimG_,. Thus
we have Np” > IN(p" — 1)(N(p” — 1) — 1). After elementary transformations this
inequality becomes p?" + 1+ 1/N < (2 + 3/N)p”". This last inequality clearly
does not hold if p” > 5. Since p > 5 is among our general assumptions, we have a
contradiction. Thus it remains only to prove Lemma 5.3.1.

5.3.2. Write H = kd ® H'. Let {g,} be a basis of H'. By Corollary 4.2(iii) we
know that G, = G’,. By Theorem 3.2(i), we can consider G, as a submodule of
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H ® G*. Then we can write y € G, as y = d ® Y(y) + Lg, ® ¥, (), where ¢ and
the y, are linear maps from G, to G*. As H/H’ is a trivial H-module, ¢ is an
H-module map. As G, = G¥*, is irreducible,  is an isomorphism. Set v* = (y) and
@; = ¢,y ' Theny = d ® v* + Lg, ® ¢,(v*), where ¢;; G* — G* are linear maps.
Here v* is the element of G* -corresponding to y € G; under G, = G*; the
coefficient of d is v* as it is kd that determines the pairing between G, and G_;.

As H’ acts trivially on k{x}, k{x} has no H-invariant ideals. As H preserves the
divided power structure of k{x}, d acts on k{x} as a,d + L, qa,x'"} 3, where
dx{) = x{~anda, # 0. ThereforedactsonG_, = U® k{x}as¥, o4, ® x{9,
where 4, € EndU, 4,# 0, and (4 ® P(x)d)(u ® Q(x))= Au ® (P - 9Q)(x).
Consider V=U® L, okx{"). Then d™"V C AU ® 1 + V. Since V + L,,,,d"V is
H-invariant and G_, is H-irreducible we have 4 ,U = U, i.e., det A, # 0.

The following lemma is formulated in a slightly more general form than is
immediately necessary. We use notation H for the subalgebra of operators or
U ® k{x} preserving the filtration by degree of x in U ® k{x}.

5.3.3. LEMMA. Lety € H ® G* (= F,) be suchthaty = A ® 3 ® @(v*)mod H &
G*,where A € EndU, A # 0, and ¢ € End G*,. Let
b= Y b,‘,,'j'j,(u,-,®x(’)/\1)1,®x(”)EF_2
1<)
and suppose that all summands in the expression for b are nonzero. Let (m, q) =
min(b) > 0. If m > 0, then the lowest term (with respect to powers of x) in th
expression for [b, y]is

-1y bm.,,‘md,(p(v*)(u,, ® x('")) - Au,

V<’

—<p(v*)( Y bm.,,.j‘j,(u/@x(”))-Au,]@x(’”_”.
(m,i"<(j.j")

REMARKS. (a) The expression @(v*)(Zu, ® x (/1) means the value of p(v*) € G
onXu, ® xVVe G_,.

(b) We do not rule out the case that the given expression (or even [b, y] itself)
zero.

PROOF. It is clear that the lowest term belongs to U ® x{™~!}. Therefore th
lowest term is contained in [b, A ® 3 ® @(v*))], and furthermore it is contained in

Y b, (u@xt™Aau,@x)), 40088 (0%
(m i <(y.J"

= - M bm_,,'j‘j,([(p(v*)(ui,®x("‘))-A ®8,uj,®x(”]

(m,1")<(y.J)

+[u,, ® x('"),(p(v*)(uj, @x). 4@ 8])

- Y bm‘,,d‘j,((p(v*)(u,,®x('”))-Auj,®x(f‘”
(m,1)<(y.)

00 (s © x11) - Au, & x07).
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Collecting together the terms from U ® x{™~ 1} we readily see that they have the
form claimed in Lemma 5.3.3.

5.3.4. Proof of Lemma 5.3.1 concluded. Set Q = (£, jk - Au) @ x{" U + % _ U
® x {4}, Then it follows from Lemma 5.3.3 that

[b, y] = @(v*) Y bm‘q‘j‘j,(u/®x‘”) “Au,® x(""1 (mod Q).
(M, q)<(j.s"

Now let b € D_, be such that m > 0 in (m, g) = min(b) (i.Le.b € D_, N (U ® k{x}
AU® km)). Then [b, y] = Osince b € D_,, whence [b, y] = 0mod Q. Since 4 is
nondegenerate and ¢ = Id € End G* we get from the above expression for
(b, ymod Q that £, o\ <(, ivBm o, (4, ® xU))=0,ie,b,, .=0for(j, )>
(m, g). This contradicts the construction of (m, g) = min(b) This contradiction
proves Lemma 5.3.1.

5.4. PROOF OF THEOREM 5.1. It remains to prove that H” = H’. Suppose that
H" + H’'. Then there is an ideal K of H, H' © K 2 H” such that dim(H/K) = 2,
H = kd + kh + Kwith[d, h)= hmod K, and H' = kh + K.

5.4.1. As in 5.3.2 we write any element y € G, in the form y =d® v* + h ®
@(v*) + g, ® §,(v*), where v* € G¥* corresponds to y € G, under the (fixed)
isomorphism G, = G*, ¢, §, € End G*, and { §;} is a basis of K.

For x € H we know that [x, y] corresponds to xv* € G* under the isomorphism
G, = G*. We use this fact for x = d, x = h, and x € K. We have

[d,y]=d®dv* + h ® p(dv*) mod K ® G*,.

On the other hand, a direct computation gives

[d,yl=d®dv* + h® ¢(v*) + h ® dp(v*) mod K ® G*,.
Therefore p(dv*) = @(v*) + dp(v*) or
(5.4.1.1) o(dv*) — do(v*) = @(v*).
Similarly, [h, y]=d ® hv* + h ® q;(hv*) mod K ® G* or, by direct computation,
[h, y]= -h ® v* + d ® hv* + h ® he(v*)mod K ® G_;. Thus @(hv*) = -v* +
he(v*), or
(5.4.1.2) o (hv*) — ho(v*) = —v*.

Finally, [x, y] = d ® xv* + h ® p(xv*) + K ® G* for x € K or by direct computa-
tion[x, y]=d ® xv* + h ® xp(v*) + K ® G*; that is,

(54.1.3) @(xv*) = xp(v*) forx € K.

The last equality says that ¢ € End ,(G*)).

5.4.2. By Proposition 5.3 we know that G _, is irreducible for H' = kh + K. If G_,
were irreducible for K, then ¢ € End G* would be a scalar. Applying (5.4.1.2) to
this case we get a contradiction: 0 = -1.

Thus G_, is reducible for K.

5.4.3. Since G, is irreducible for H' = K + kh we see that G_, is differentially
irreducible for K with one derivation (namely, k). Therefore we can write (as in
Proposition 5.3 and in view of R. Block ({1, Theorem 2] or [2]) that G, = U ® B,
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with an irreducible K-module U, and K acting trivially on B,. Moreover, we have
B, = End ¢ (G_,). Therefore we have an action of G/K on B,. Since G_, is irreduc-
ible for H’ we see that B, does not have h-invariant ideals. Therefore it does not have
G /K-invariant ideals. In view of R. Ree [10] and R. Wilson [15] (explicitly stated in
M. 1. Kuznetsov [9, Proposition 2.1]) there are two possibilities:

(i) B, has a structure of a truncated divided power algebra in one variable, i.e.,
B, = B,(n) = k{x} and G/K acts on B, by special derivations of k { x }. Recall that
a derivation D of k{x} is special if Dx *} = x (=1} Dx,

(ii) B, has a structure of a truncated divided power algebra in two variables, i.e,
B, = B,(q,r)=k{X,y) with g+ r=n, g>r>0, G/K acts on B, by special
derivations of k{ %, 7}, and there are two linearly independent derivations in G/K
which do not preserve filtration. Recall that a derivation D of k{X, y} is special if
Dz} = z"D Dz forz = % or j.

5.4.4. Let us look at the first case first. Let @ be the derivation of k{ x} given by
0x ("} = xU~1) Then h acts on End ; G_, as H9 and d acts as D3 with H, D € k{x}.
Also we represent ¢ € EndG* = EndiG_, = k{x} by F € k{x}. Write H =
Thx{, D=Ydx!"and F=Xfx!" withh,d,f, € k.

Since End x4 G_, has no h-invariant nontrivial ideals, the constant term of H must
be nontrivial, h, # 0. Replacing d by d — (dy/h,)h we have that d, =0 (this
change causes also changes in ¢ and the ;).

The relation [d, h]= h (valid for d, h as operators on EndyG_,) becomes
D-0H — H - 93D = H. Therefore —-h, - d, = h, whence d, # 0. Now the relations
(5.4.1.1), (5.4.1.2) become [d, ¢] = -, [h, ¢] = 1d or, by definition of the action of
G/Kon Endy G*,d(F)= -F,h(F)=1. Thuswehave D - 9F = -F, H- 0F = 1.
The first equality implies that f, = O (because d, = 0), and the second one that
f1 # 0 (or, more precisely, k- f; = 1).

Now, as in 5.3.2 we can write y € G, in the form y = 4 ® 9 ® p(v*)mod H ®
G*,, where H is the algebra of operators preserving the filtration of U ® k{x}; h
actson G_; = U® k{x)} as L4, ® x{"} 3 with 4 = 4,,det A # O (this is because
d, = 0, so d preserves the filtration). By Lemma 5.3. and the notation of 5.3.4 we see
that for b € D_, withm > 0in (m, ¢) = min(b) we still have

) T by, luext)) =0

(m.g)<(y.j)

(we use the fact that A is still nondegenerate). (However, now ¢ is not an
isomorphism!) We have ¢(G*)= F-G* = U* ® (F), where (F)=F-k{x}
Since f, = 0, f; # 0 we have f'Fx{"} = x*1} 4 (higher terms) whenever p + i + 1
Therefore dim(F) > p" — p"~ !, Let M be a complement to (F)* in k{x} anc
V=MnNk{x)}. Then dim M > p” — p"~!, dim¥ > p”" — p"~' — 1. Now for b €
U®VAU®VwehaveL,, , <., bmg, (4, ®xV)) € U® Vand therefore if
in addition, b € D_,, we have ¢(G* )X, 4)<(,.,Dm. q”(u ® x1/))) = 0. By ou
choice of V' this implies that ¥, . <, 4bp,, A4, ® x U}y = 0, contradicting, as i1

5.3.4, the definition of min(b). Thus D_,N(U® VA U® V)=0.Then U® V 2
U ® V is mapped injectively into G_,. Therefore
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dimG_, >dim(U® VA U® V)
>IN(p"=p" ' =1)(N(p"=p" ' =1)-1),

where N = dimU. Since N - p" =dimG_, > dimG_, we get the inequality Np”
> IN(p" = p" ' = 1) (N(p"p"~ ! — 1) — 1) which, after multiplying through and
collecting terms, becomes

2p" Y+ (24 3/N)p" = p*"+p" 2+(2+1/N)p" ' +1+1/N.

The left-hand side is clearly bounded from above by 7p2"~!. Therefore for p > 7 the
inequality is violated. This contradiction proves the theorem in case (i).

5.4.5. Let us look at the second case. So EndG_, = B,(q,r) = k{X, y} with
q+r=n,q>r>0.Letd,, 9, be the derivations of k{%, y} defined by 9,%{"} =
0-1,9,9=10,0,%x=0,9,7) = 5~ Since End 4 G_, has no h-invariant ideals
we see that & acts on k{X, y} as ad, + bd, + (higher terms) with ad, + bd, # 0. If
a # 0 we can replace y by bX — ay and thereby achieve that & acts on k{X, y} as
9, + (higher terms). Otherwise, h acts as b9, + (higher terms), b # 0. To simplify
our notation let us set x = X, y = y in the first case and x = y, y = X in the second
one. Then End, G_;, = k{x, y} and & acts on it as ¢ x + (higher terms) with ¢ # 0.
We can writed = D,d, @ + D,d,andh = H,9, + H,9,, where D, = Xd, , x /)y %)
and H, = Th, ,x U1y (¥} We have by the above that kg, # 0, hy, = 0. Replacing d
by d — (d;go/h100)h We have that d,y, = 0. By the remark at the end of §2 of [9] we
have d,y # 0. To ¢ € End 4 G* we put into correspondence F € k{x, y}, F=
S, x(y ),

The conditions (5.4.1.1) and (5.4.1.2) become d(F) = —F, h(F) = 1, or explicitly
Do, F+ D,d,F=-F, Hd F+ H,d,F=1. Looking at the constant term of F in
these expressions we get dygofor = ~foo and hygofi0 = 1. Thus either fo, # 0 (and
then g is invertible) or foy, = f;; = 0, f,p # 0. Writed = 4 ® 9, mod H and h = B ®
3, mod H for d and h acting on G_, = U ® k{x, y}. Here H is the algebra of
operators preserving filtration of U ® k{x, y} and 4, B € EndU. Since G_; is
irreducible for H' = kh + K the same argument as in §5.3.2 (with d replaced by &)
gives that det B # 0.

Now we can write any element z € G, intheformz =4 ® 9, ® v* + B® 9, ®
@(v*)mod H ® G*,det B + 0, v* € G*. Then any element from G_, has the form
Zu,;,x{yt/} and an element b € F_, = G_; A G_, has the form

b= Z b it ® x 1yl A u, ® x{lyt,
(1.7, D<@’y 1)

whereu,,i = 1,...,N = dimU, is a basis of U and the triples of integers are ordered
lexicographically. Let

min(b) = min{(i, j, 0Ib, .0 * 0 for somei’, j’, Iy.

Write min(b) = (s, t, r). Then, as in Lemma 5.3.3, if s > 0 then the lowest term
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(with respect to powers of x and y) in [b, z] is

[‘P(U*)( Z bs,r.l.i',j',l'(“/' ® x("}y(/)))Bul
(

s L hy<@', gy r)
- Z bs.r./,:.:‘/"P(U*)(“/ ® x(”y('))Bu,»] ® x(s—l)ym-
I<r

Setting Q =X, k- Bu, ® x{s7 1yl 4+ 3
that

sl ® xtlylUl we see as in 5.3.4

boal=e() T b xty)| By, @ U (mod Q).
(s.t.n<(i,j. D

Thusif b€ D_,, s > 0in (s, t, r) = min(b), then A(b, v*)Bu, = 0 for all v* € G*,

where

e =) T b (e ).
(s, 6.<(i j. D)

Since det B # 0 it follows that A(b, v*) = 0 for all v* € G*. Now, as in 5.4.4,
o(G*)=U*® (F), FE€ k{x,y}. If Fis invertible, then (F)= k{x, y} and
¢(G*,) = G*,. Therefore in this case, A(b, v*) = 0 for all v* € G*, is equivalent to
Zison<tigirbsiri (4 ® xy ) = 0 in contradiction with the assumption s > 0.
Thus in this case D_, N(U® K{x, y} A U® k{x, y}} = 0, where k{x, y} = {P
€ K{x, y}IP=X,,,p,x\yll},

If Fis not invertible, then fy, = f;; = 0 and f,, # 0. As in 5.4.4 this implies that
dim(F) > p" — p"~!. Again as in 5.4.4 we take M to be a complement of (F)* in
k{x, y} and set V=M N k{x,y}. For be U® VA U® V we have
Zonn<ijnboiri,(u,®xtylUye U® V and if, in addition, b € D_,, then
A(b, v*) = 0. By our choice of V this implies a contradiction with a definition of
min(b).

We have dimk{x, y} =dimk{x, y} —dimk{y} > p” — p"~' and therefore
dimV > p" —2p" L Since D,N(U® VA UAV)=0 (we take V = k{x, y} if
F is invertible), we see that

dimG_, > dim(U® VA U® V) > iN(p" = 2p"~ 1) -[N(p"—2p" 1) - 1].

As before, we have (by our choice of G_;) the inequality dimG_, > dimG_, which
becomes 2Np" > N2(p?" — 4p?"~! + 4p2"=2) — N(p" — 2p"~!). We divide it by
N?p"~!and collect:

n 3 n+1 n—1 ,3,
4p" + N p=p + 4p + N
As n > 2 and p > 7 the right-hand side is > 7p" + 4p, which is larger than the
left-hand side. This contradiction concludes the proof of Theorem 5.1.
5.5. Remarks and comments on the proof.
5.5.1. We derived a contradiction from dimG_, > dimG_,. Probably a more

general fact takes place: If p > 5 and if G = @, _,G, is such that G, has solvable
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quotients of dimension > 2 and [G,, G_,] = G, with G, and G_, irreducible, then G
is infinite-dimensional (maybe even of exponential growth).

What we did was probably just verifying the first step.

5.5.2. In characteristic 3 there exist graded algebras of the type we rejected; see
Frank [4].

PART II. SOLVABLE MAXIMAL SUBALGEBRAS

In this part we consider simple Lie algebras which contain a solvable maximal
subalgebra. Using the results of the preceding part we conclude that such a
subalgebra gives rise to a long filtration. We pass then to the graded Lie algebra and
work hard to prove that certain graded Lie algebras with solvable zeroth term are of
type A, or W,. Our main tools are papers [5, 9, 12].

The steps of the proof are the following: We consider a minimal counterexample
S = @,'=_,,Si- We show by constructing different smaller subalgebras that S is
generated by S_; and S, and then that S, is irreducible. This latter step required very
detailed study of the structure of our algebra. Then, once we established that S, is
irreducible (and it is automatically faithful), we are able to invert the grading of S,
that is, to replace S, by S_,. Then we can assume that g < r. Using interplay between
@ S, and @, _ _ S, we are able to arrive at a contradiction.

i>-1qi i»-1

The ground field is still assumed to be algebraically closed of characteristicp > 5.

1. Setup and statements of results. A solvable maximal subalgebra is a maximal
subalgebra which is solvable.

1.1. Suppose that L is a simple Lie algebra which contains a solvable maximal
subalgebra H. Suppose that L, is bad. By Theorem 1.5.1 this means, in particular,
that dim H = 1. Then by Theorem 1.2.2, L = D ., p L ,and L, i # 0, are irreduc-
ible and faithful for L,. But then L, & L, is a proper subalgebra (and solvable at
that). Thus L, is never bad. Let 4 be a commutative ideal of L;,. Then A4 acts
nilpotently on L. By Corollary 1.1.4(ii), A acts nilpotently on G. This shows that L,
gives rise to a long filtration of L.

1.2. More generally, consider a Lie algebra L with a maximal subalgebra L, which
contains no ideals of L. Pick a simple Ly-submodule F in L/L, and let L_, be its
preimage in L. Suppose that Ker Ly| . # 0 (which is certainly the case if L, has
ideals acting on L nilpotently). Then set L,_, = [L,, L)+ L, fori <0and L, ,, =
{x € L,|[x,L_]J< L,} fori > 0. In particular, L, = Ker Ly|. Then {L,} is a Lie
algebra filtration in L (see [12]).

LetG=®,_,G, G =L,/L,,,, be the associated graded Lie algebra. The main
result of Part II is

1.3. THEOREM. Suppose that L, is a solvable maximal subalgebra of L and that L
lefines a long filtration of L. Then there exist a simple Lie algebra S of type A, or W,
vith standard grading S = @ S;, a number m and a solvable subalgebra T of
lerivations of degree O of S ® B, suchthatG=S® B, + T,G,= S,® B, fori + 0,
ind G, = S, ® B,, + T, B,, has no T-invariant ideals. In particular:

(i) L = L_, (i.e., Ly is irreducible on L/Ly);

(i) dim(L,/L,,,)=mifi#0and L,/L,,, # 0.
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In view of this theorem and M. 1. Kuznetsov [9, Theorem 6.1}, we have

1.4. COROLLARY. Suppose that L is simple and contains a solvable maxima
subalgebra. Then L is of type A, or W,.

1.4.1. REMARK. In characteristic 3, as was already remarked, there are counter
examples to the above statements, see, e.g., M. Frank [4].

1.5. To start proving Theorem 1.3 we denote by M(G) (see [12, §1.5]) the larges
ideal of G contained in &, _ G, We set G=G/M(G), G= @G, Let A(G)=
® A(G), (see [12, §1.6]) be the smallest nontrivial ideal of G. According to [12] ther.
are two cases: degenerate case (when A(G ); = 0) and nondegenerate case (whei
A(G), # 0).

1.6. LEMMA. We are in a nondegenerate case. More precisely, if L, is a solvabl
maximal subalgebra of L, then there exists a simple graded Lie algebra S = & S,, «
natural number m and a solvable subalgebra T, of derivations of degree zero of S ® B,
such that A(G) = S ® B,,, A(G),= S, ® B,, G, =5®8B, fort<0andG0—Go
So ® B, + Ty,

PROOF. Suppose that G is degenerate. Then G, contains an ideal of the forr
S ® B, with S simple. This is impossible since G, is a quotient of L,, and L,
solvable.

2. The case when S is of the type 4, or W,. Suppose that L = {L,} is a filtered L
algebra and L a solvable maximal subalgebra in L and suppose that L contains n
ideals of L. We take notation from the preceding section. As a first step and 1
simplify reference, we record some properties of G in the case when S is type A«
W,.

2.1. LEMMA. Let G be as in §1.5. Suppose that S is of type A, or W, with standai
grading. Write S, = ke,. We have:
(1)G = Ofort < -2; G = G, fori> -1,
(i) G, = A(G),fort #0,i> -1,
(iii)) G,=e,® B, fori +# 0,i > -1;
(iv) e, ® B,, € G, is a commutative ideal of Gy,
(v) Gy acts on ey ® B,, by derivations of B,; B,, has no G-invariant ideals;
(vi) e, ® 1 is in the center of Gy and it acts as (multiplication by ) i on G,
(vii) the G,, p + i,i > -1, are irreducible and faithful G-modules;

(viil) ey ® B, is the kernel of the action of Gy on G,,, i # 0.

PrOOF. We have S, = 0 for i < -1, whence (i). Now (ii), (iii), (iv) and (v) follc
from M. I. Kuznetsov [9, Theorem 5.1 and Proposition 2.1]. (They can also
derived with little work from results of [12]). Now it is clear from (v) thate, ® 1 is
the center of G, and that G, = ¢, ® B,, + T, with T, C 15 ® Der B,, acting
e, ® B, in such a way that e, ® I is not a Ti-invariant subspace for any ideal /
B

m*
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Now e, ® 1 acts as 0 on G, and it acts as i on G, = A(G),, i > -1, since
[e,® 1,e,® b] = [eg,e,]® b =ie,® b for b € B,. Since G,_, =[G,,G_,] fori <
-1 we have that e, ® 1 acts as / also on G,, i < -1. This establishes (vi). To prove
(vii) and (viii) note that e, ® b, b€ B,,, actson G,=¢,® B, i> -1, i+ 0, as
multiplication by ib; in particular, it acts trivially on G,, p|i. So Ker G,|G, 2 ¢, ® B,
if i # 0, p|i, and the only invariant subspaces for e, ® B,, on G, p 1 i, are of the
form e, ® I, where I is an ideal of B,. As T acts faithfully on B, we see that
Ker G,|G, = e, ® B,, if p|i, i # 0, and KerGy|G, = 0 if p +i. Since B, has no
T,-invariant ideals it follows that G, acts irreducibly on G,, p + i. This concludes the
proof of (vii) and (viii).

2.2. REMARK. We assumed that S has the standard grading. The only other
possibility is that S has inverse to standard grading; that is, S, = Ke_,. But then
[S_;, S_,] = 0; that is, S is type A4, and for type A4, there is no difference between
standard and inverse to standard grading.

2.3. PROPOSITION. Suppose that S is of type A, or W, with standard grading. Then
M G)=20

PRrROOF. Since the grading of S is standard we have S = & _ , S;. Thus G, = 0 for

-2 and therefore M(G) = &,_ G, Since G_, C M(G) we have [G_,,G,]=0
= [G_,, G,]. Therefore[L_,, L,] C LO, [L_,, L2] cL,.
Sete M=L My=L,,M =L, M,_,=[M _1]+M,. fori < -1,and M,

={x€ M,|[x,M_]c M} foriz=0. Then M, is a Lie algebra filtration in M (see
proof of Proposition 1.2 in [12]). We know that [M_,, L,]=[L_,, L] C L, = M,.
Thus L, C M,. On the other hand, M, = KerM,|,, ,, S KerMy|, , =L,
Thus Ml =1L,

Similarly, (M_,, L,] = [L_,, L,] € L, = M, implies that L, € M,. Now M,/L,
is a submodule of G, = L,/L,. But G, is irreducible (by Lemma 2.1(vii)). Since
M, # L, we must have M, = L,.

Now let H= @®H, H,=M/M,, ,, be the graded algebra associated to the
filtered algebra {M,}. We have H,= My/M, = L,/L, = G,, H = M\/M, =
L,/L, = G,. In particular, ¢ = e, ® 1 € G, (cf. Lemma 2.1) acts as 1 on H, and as
0 on H,. Therefore, for x € H, and y € H_; we have [x,[c, y]] = [[x, c]y] +
[c[x, y]] = -[x, y], whence [H,,[c, y]+y]=0. Let [c,y]+y=v+ M, Then
[M,,v]C M,, ie, [L;,v]C L,. Since L, is not an ideal of L and since L, is
maximal in L the inclusion [Ll, v) € L, implies that v € L, = M, whence [c, y] +
y=0,1e,cactsas -1 on H_,. However, H_,involves G_,and c = ¢, ® 1 € G acts
as -1 on G_, and as -2 on G_,. Thus it cannot act as —1 on H_,. This contradiction
concludes the proof of Proposition 2.3.

2.4. COROLLARY (M. 1. KUZNETSOV [9, THEOREM 6.1)). If L is simple and S is of
type A, or W\, then L is of the same type.

3. Initial properties of a minimal counterexample. Our aim is to show that §
appearing in Lemma 1.6 is of type A, or W,. To show this we pick S of minimal
dimension which can appear in Lemma 1.6 and which is not of type 4, or W,.
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3.1. LEMMA. Let S be as above, S = $I’=~qSi. Let D, = (Der S),. Then:
(1) S is simple;
(ii) S, is solvable;
(iii) S is not of type A, or W, (i.e.,dim S, > 1);
(iv) S_, is a faithful D-module;
(v) S_, is an irreducible Dy-module;
Vi) S,y =18, Syl fori < -1;
(vii) for any x € S;, x # 0, i > 0, we have [x, S_,] # 0;
(viii) S_ is irreducible for Sy,
(ix) D, acts faithfully on every Dy-submodule of S,.

PROOF. First, (i) and (ii) hold by construction and (iii) is our assumption. Next,
(v), (vi) and (vii) are contained in [12, Theorem 4.1(iii)] and (viii) in [12, Lemma
4.5.1(ii)]. Let us establish (iv). Let x € (Der S),, [x, S_;] = 0. Then [x, S;] = 0 for
i < 0 in view of (vi). Assume by induction that [s, S,] = 0 for i < m, m > -1. Then
fory € S,,., we have [S_,[x, y]] = [x[S_,, ¥]] € [x, S,,] = 0. By (vii) it means that
[x, y] = 0; that is, [x, S,,,,] = 0. Thus x acts as 0 on s, i.e., x = 0. This proves (iv).
Now (ix) follows from [12, Proposition 3.2.1(ii)] and the fact that S is solvable.

3.2. DEFINITION. A graded Lie algebra S = @ i’s_qS,- of minimal dimension among
the Lie algebras satisfying the conclusions of Lemma 3.1 is called a minimal
counterexample.

3.3. LEMMA. Let S = @l'=_qS, be a minimal counterexample. Let V # 0 be a
Dy-submodule of S, andlet $ = {(S_,,V) + D,. If § + S, then S/M(S)=R ® B,, +
D,, where R = ke_; ® ke, ® ke, is a simple graded Lie algebra of type A,. In
particular:

(i) D, has a commutative ideal ey ® B,, = [S_1, V];

(ii) Dy has a nontrivial center, Center(Dy) D e, ® 1.

PrOOF. First of all, $/M(S) is nondegenerate in view of Lemma 3.1(ix). Thus
A(S/M(S)) =R ® B, (by [12, Theorem 4.1]) with R simple and satisfying conclu-
sions of Lemma 3.1(iv)-(ix). Properties (i) and (ii) of Lemma 3.1 are also satisfied.
Since S was a minimal counterexample we have that R is of type 4, or W,. As R
= (R_,, R,) we have that R is of type 4,. The rest is easily checked.

3.4. PROPOSITION. Let S be a minimal counterexample. Then S = (8,,5,) (ie, S
is generated by S, and S_,).

PROOF. Suppose not. Let § = (S_,, S,) + D,. Then by Lemma 3.3 we have
S/M(S)= R ® B, + D,, where R is simple of type 4,, R = ®'__R,dimR, = 1.
We have S, =R_;®B,, S, =R, ® B, and, since [S),S_;]=S, (by Lemma
I11.1.1), we also have S, = R, ® B,,.

Next, since R, = 0, we have [S,, S;] = 0. Both S, and S_, are irreducible for D,
If m=0 then [S_,,S,]=0, ie, S.,=0, ie, ¢g=1. But g >1 by (an indepen-
dently proved) Proposition 3.6 below. Som > 1.
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Let C be the maximal ideal of B,,. Then R, ® C acts nilpotently on S_,. Therefore
(since S;_, = [S;, S_;] for -1) R, ® C acts nilpotently on all S, i < 0. By Lemma
3.1(viii) it acts trivially on S_, and therefore dim S_, = 1. By Proposition I11.1.12(iv),
S, acts nontrivially on S_,. Therefore D acting on B, by derivations must preserve
C. But then it also preserves R_; ® C, i.e., D, is not irreducible on S_;, a
contradiction.

3.5. PROPOSITION. Let S be a minimal counterexample. Then S, has at most one
proper Dy-submodule. In particular, S, is indecomposable.

PROOF. Suppose the contrary. Let V,V be two proper submodules, V # V.
Consider § = (S_,,V) + D, and § = (S V) + Dy, By Lemma 3.3 we have
S/M(S)= R ® B;, + D, S/M(S) = R ® B, + D, with R, R of type 4,. In partic-
ular, both ¥ = R, ® B; and V = R, ® B, are irreducible for D,,.

We claim that 7 + ¥ = S,. If not, then ¥ + ¥ is a proper submodule of S,, and
we can assume that it is one of our submodules ¥ or V, say V. Then V 2 V. Since
both ¥ and V are irreducible we must have ¥ = V, a contradiction.

Thus ¥V + ¥ = S,. Now we know that S_, € M(S) and S_, € M(S). Therefore
[S_,,V]1=0, [S_,,V]=0, whence [S_,,S,]=0. Since &, S, = (S;) we have
that S_, € M(S), and since S is simple, S_, = 0. Thus ¢ = 1, which is a contradic-
tion in view of the following

3.6. PROPOSITION. Let S be a minimal counterexample. Then q > 2.

PROOF. Suppose ¢ = 1. As S is simple it follows that S_; is irreducible for S,
(Proposition I11.1.12(iii) with ¢ = 1). Now our claim follows by M. I. Kuznetsov [9,
Theorem 5.1}.

4. Proof that S, is irreducible for D,.

4.1. PROPOSITION. Let S = ®__S be a minimal counterexample. Then S, is
irreducible for D,,.

To start the proof we suppose the contrary. Let V' be a proper submodule~ of S;.
Set $,=S, for i<0, S§,=D, and §;, =V, §,,={x€ S ,,|[S.;,x]c S} for
i>1.Set S = &8, Itis a subalgebra by Lemma II1.1.8.

"4.2. LEMMA. (1) S,/ V is irreducible;
(ii) S is a maximal subalgebra of S + Dy;
(i) $n s, =V,
(iv) S,/V is contained in every nontrivial S-submodule of (S + D)/ S;
) S/M(S)=R® B, + D,, where R is a simple Lie algebra of type A, or W,
with standard grading.

Proor. First, (i) follows from Proposition 3.5. Then (ii) and (iv) follow from
Proposition I11.1.9. Next, (iii) is just the definition of .
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To prove (v) note that $/M(S) is nondegenerate in view of Lemma 3.1(ix). Thus
A(S/M(S)) = R ® B,, (by [12, Theorem 4.1]) with R simple and satisfying conclu-
sions of Lemma 3.1(iv)-(ix). Properties (i) and (ii) of Lemma 3.1 are also satisfied.
Since S is a minimal counterexample we have that R is of type A, or W, as required.

4.3. CoROLLARY. () M($) = ®,__, S, # 0.
(i) Write R= &, _ ke, Then e, ® 1 belongs to the center of D, and acts as
multiplication by i on each S,.

PrROOF. By Lemma 4.2(v) we know that (S/M(S)) ,=0. So S_, < M(S).
Therefore M(S) = ®._, S,. Since ¢ > 1 we have M(S) # 0. This proves (i).

We have [e, ® 1,e_, ® bl =[ey,e_,]® b= -e_, ® bforb € B, Thereforee, ®
lactsas -1 on S, = § ,. Since D, is faithful on S_, it follows that e, ® 1 is in the
center of D,. Since S_, = [S,, S_,] for i <0, it follows that e, ® 1 acts as i on §,,
i < 0. Suppose that e, ® 1 actsasion all S, i <t. Thenforx € §_;,y € §,,, we
have

[x[eo® 1, ¥]] = [[x,e0® 1], y] +[eo ® 1.[x. y]]
=[x, p]+1t[x, y] = (¢t + D[x, y].

In view of Lemma 3.1(vii) this implies that e, ® 1 acts as (+ + 1) on §,, ;. This
proves (ii).

44. Now set L =S + D;, L,= S, and let L_, be a minimal subspace of L such
that L, D L,, L_,# Lyand [L_,, L)) S L_,. Let { L;} be the resulting filtration
(cf. §1.2).

LEMMA (1) L_, is the L-submodule of L generated by S|, + L;
mL, = M(S) # 0; in particular, the filtration is long.

PROOF. The first claim directly follows from Lemma 4.2(iv). To prove the second
claim, note that M(S) is a nilpotent ideal of L,, and M(S) acts nilpotently on L.
Therefore, M(S) acts trivially on the irreducible Ly-module L_,/L,. Thus M(S)c
L,. Next, L, is a nilpotent ideal of L,, and the algebra S/M(S) does not have
nilpotent ideals (by Lemma 4.2(v)). So L, = M ().

4.5. LEMMA. Let F = @ F, be the graded Lie algebra associated to the filtered Lie
algebra { L;}:
(1) F/M(F) is nondegenerate;
(i) Fy, = R ® B, + D,;
(i) [F,, F.,]=R®B,;
(v)F,, 2 8/V;
(V) ACF/M(F)), 2 S_,.

(Inclusions and equalities here and below have the natural interpretation.)

PrROOF. We clearly have (iv) by Lemma 4.4(i), and (i) by Lemma 4.4(ii). In
particular, S_; € F,. By construction of the graded Lie algebra we see that
[$.,.8,/V]=01in F. Since F_, is generated by S,/V as an F;-module by Lemma
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4.4(i), to show that [F}, F.,] € R ® B, it is sufficient to check that [F}, S,/V]C R
® B,. But [£,__,S,S,/V]ICX,.,S. So [F,S,/VINF,=8,<R®B,. So
[Fi, F;1€ R® B, and [F|, F.,}] 2[S_,, S;/V]=S_,. Since [F;, F_,]is an ideal of
F, we must have [ F}, F_,] = R ® B,,. This proves (iii).

To prove (v) we have to establish first that F, 2 S_,, i.e. that S_, N L, = 0. For
x€S_,N L, we have [x, L_]]c L, = M(S). Since, S, € L_, this implies that
[x, S;]1 = 0 whence, by Proposition 3.4, x € M(S) = 0. Now by (iii) (and in view of
Corollary 4.3(ii)) we have thatc = e, ® 1 € A(F/M(F)),. Sincec actsas -2on S_,
it follows that S_, =[c, S_,] € A(F/M(F)). This proves (v). Since it is now
established that A(F/M(F)), # we also have (i).

4.6. LEMMA. A(F/M(F))= P ® B,,, where P is a simple graded Lie algebra,
P=@&'"_ P.

ProOF. We have A(F/M(F)) =P ® B, with P simple graded, P = &/__ P, in
view of Lemma 4.5(i) and [12, Theorem 4.1]. By Lemma 4.5(iii) we have P, = R ®
B, _, By [12, Lemma 4.5.1(ii)] we have that P__ is irreducible for Py, and by
Proposition 111.1.12(iii) we see that [P,, P_,] # 0. Let C be the maximal ideal of
B, _, Then the preimage of R ® CB,, in L acts nilpotently on S. Therefore
R ® CB,, acts nilpotently on & _ F, ie, R® C acts nilpotently on & _ P,. It
follows that R ® C acts nilpotently on P (if n € R ® C has an eigenvalue A # 0 on
some Pj, Jj < 0, then using commutation with D, OP, we shall see that n has the
same eigenvalue on some P, r > 0). Since P_| is irreducible, R ® ¢ acts trivially on
P_. Since [P,, P_,] # 0 this means that D, preserves the ideal R ® CB, of R ® B,,,.
But then D, does not act irreducibly on S_, (and neither does F; act irreducibly on
F_)). Thus m — d = 0, i.e., d = m. This proves our claim.

4.7. Let Q be the maximal ideal of A(F/M(F)). Then P = A(F/M(F))/Q. LetT
be the one-dimensional subtorus of Aut S defining the grading S = @S, (see [12,
§14)). Since L, = S, L, = M(S), and L_, (by Lemma 4.4(i)) are invariant under
T, Tgoes over to F. Next, Q is also invariant under . So we consider .7 as acting
also on P and preserving each P. If x is the character of J on S, we can write
P, = {x € P|t-x=jx(¢) x}. This gives us a bigrading of P.

LEMMA. (i)[PU, P,= P:+k,1+/;

(i) Py= @, Py, anddim Py, = 1if Py, + 0;
()P, =& _P,,;

(iV) Pl = @ Pl,r

121
1<-2

PrOOF. We have: (i) is true since P, is a bigrading; (ii) is true by Corollary 4.3(ii);
(iii) is true since F_, is generated by S,/V and [S,/V, S_,] = 0; (iv) is true because
Lce S,

- <=2
4.8. LEMMA. (i) There exist ey, € Py, ey, € Py, and ey_, € P,_, such that
[eo1s €011 = —eq and ey, acts as (a multiplication by) j on every P, ;
(ii) there existe_,, € P_, ,ande,_, € P,_, such that [e_,,, e, _,] = €,_,.
PrROOF. We have Py = Rso Py = @,  ke.Setegy = ep €q, = e ande, ; =e_).
Then (i) holds in view of Corollary 4.3(ii).
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To prove (ii) recall that [S_,, S,/V]=S_,, where S, C F;, §;/V C F_, and
S_, € |F,, F.,]. This gives us (ii).

49.Sete, ,_,=(ade, ) ‘e, ,€P_,_fori>1lande_ ., = (adey,)e ;.
We are going to compute certain commutators. First of all, in view of Lemma 4.8(i),
(ii) we have

(4.9.1) [eo‘u eo.-1] = —€90,

(4.9.2) leoo- €] =Jei )

(4.9.3) leciner2]=eonn

Next, we have by Lemma 4.7(iii), (iv)

(4.9.4) [eo,la el,—2] =0,

(4.9.5) leo1-e10] =0

Now we claim that

(4.9.6) leon. €1 1= (i(i=1)/2 = 1)e,_;,; fori>2.

We prove it by induction. It holds if i = 2 in view of (4.9.4). Suppose it holds for
i < m. Then
[eO.l’el,-m-I] = [eo,lleo,-pel.-m]] = [[eO,l’eO,-I]el.—m] +[eo'_1[eo‘1,e1‘_m]]
= [~eo0r €1-m] + €0 1, (m(m = 1)/2 - ey i)
=me,_,+(m(m-1)/2-1)e;_,,=((m+1)m/2 - 1)e,_,,
as required.
Next, since [e_,,, e,_;}, [e_y2, €, 1) € Py_;, and Py_,,; = O fori > 2 we have
(4.9.7) le.ir,ei;]=0 fori>2,
(4.9.8) le.,s,e,-;]=0 fori> 3.

Next we have [e_,,,e, ] =[leg1, e 11le1 2] = [egale 11, e1-21 = [eo1, €0-1] =
—eq; thatis,

(4.9.9) le_12.e1_2] = —epo-

Now [[e,_y, eg1le_1;] = [€go, €_11] = €_y,; thatis, by (4.9.5)

(4.9.10) leo-1 e12]=eys-

Next [e_;,, €3] = [leos, e_1aler 3] = [leor, €1 5le 1] = [2e1 5, e.04] = -2ep,
(we used the definition of e_, 5, (4.9.7), (4.9.6) with i = 3, and (4.9.3)). Thus

(4.9.11) le1z.e1-3] = —2e_;.

Now

[el,-B’e—l.3] = [el‘-B’[eO.l’e—l,Z]] = [[el.-S’eO.I]e-l.Z] + [eO.l[el,—3’e—1,2]]
= [—26‘1,-2’6-1.2] +[e0’1,2e0__1] = -2egy — 2e9y = —4eq.

We used the definition of e_, 5, the Jacobi identity (4.9.6) with i = 3, (4.9.11), (4.9.9)
and (4.9.1). Thus

(4.9.12) lei 3 ec13] = —deqy.
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Next, [e;_,, e_14] = [e;_sleqs, e13]l = [egiler o, €131l = [eg), Aegy] = 0. We
used the definition of e_, 4, (4.9.4) and Lemma 4.7(i), (ii). Thus

(4.9.13) [ei-5.e14]=0.
Now [e;_4 €_13] = [e 4. [eo1, €101 = llei_ 4 €g1le_12] = [-5e, 3, e 15] =

-10e,_,- We used the definition of e_, 5, (4.9.8) with i = 4, (4.9.6) with i = 4 and,
finally, (4.9.11). We got

(4.9.14) ler are 3] = -10eq ;.
Finally,

[el.—d’ 9-1,4] = [el.-4[e0.l’ e—1.3]] = [[el.-4s eo,1]e—1,3] + [90,1[91.—4’ 9—1,3]]
= [1581'_3, 8_1'3] +[e0'1, —1080'_1] = 2080'0 + 1060’0 = 3080'0.

We used the definition of e_; 4, the Jacobi identity, (4.9.6) with i = 4, (4.9.14),
(4.9.12) and (4.9.1). Our result is

(4.9.15) e 4, €_14] = 30eq.
4.10. Now look at the subalgebra of P generated by
Ei=e,,; Ey;=e 4 H=ey, Fi=e_, F=¢_,

We have [E,, F;] = A8;;H, A\, = -1, A\, = -30, and [H, E|] = a,E,, a; # 0, which
makes our algebra into a contragredient algebra. Asp > 5 we have A} # 0, A, # 0.
By V. Kac [5, Lemma 2.1 or 2.3] it follows that our subalgebra and, therefore, P,
and, therefore, S are infinite-dimensional. This contradiction establishes that S,

must be irreducible.

5. Proof of Theorem 1.3 concluded. We have established in the previous section
that S, is irreducible. It is faithful by Lemma 3.1(ix). This makes it possible to invert
the grading of S = ®__, without violating conclusions of Lemma 3.1. So we can
(and shall) assume that ¢ < r. For easy reference we record

S1L.LeMMA. () r>2((p—-1)/2)g; 9> 1;
(ii) S, is irreducible;
(iii) S is generated by S, and S_;;
(iv) So S [S_,, S+ [S_ 441, V] for any Dy-submodule V # 0, 0f S, _,;.

PRrooOF. First, (i) follows from Theorem II1.2.1 (applicable in view of Remark
II1.2.1.1) and Proposition 3.6. Now (ii)) and (iii)) are Propositions 4.1 and 3.4,
respectively. Finally, (iv) is Proposition II1.1.7(ii).

5.2. LEMMA. Let V # 0 be a Dy-submodule of S;.

(1) If p + i, then S, acts faithfully on V.

(ii) If p|i, then every commutative ideal of D, (in particular, the last nonzero term of
the derived series of Sy) acts nilpotently on V (and therefore trivially if V is irreducible).

PROOF. Let I be a commutative ideal of D,. Then I is a nilpotent ideal, and (ii)
follows from Corollary IT11.1.11(ii). If R is the kernel of S, on V, then R is an ideal of
D,. Let J be the last nonzero term of the derived series of R. Then J is a nilpotent
ideal of D, and (i) follows from Corollary I11.1.11(i).
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5.3. PROPOSITION. Supposep + ¢ — 1,q > 2. Then <S_ g+ 1 Sq_1> is isomorphic (as
a graded Lie algebra) to R ® B,, where R is graded of type A,. In particular, S_,,,
and S,_, are irreducible.

PROOF. Let V be a Dy-irreducible submodule of S__ ;. Consider S = < v, Sq_,>
+ D,. By Proposition I11.1.5(iv) (applicable in view of Proposition I11.1.4 and the
Remark following it) we have [V, x] # 0 for any x € S__,, x * 0. By Lemma 5.2, S,
is faithful on V. Consider D, = {x € Dy|[x, V] = 0}. Then D, is an ideal of D, and
[ Dy, So] = 0 as both are ideals and S, is faithful on V. Then [D,, S 711 = 0 as well
(for if [D,, x] # 0 for x € S,-1, then 0 # [VID,, x]] = [DO[V x]] Cc[Dy, 501 =0, a
contradiction). Thus D, is an ideal of S. Replacing S by § = §/D, we see that S
satisfies properties (i), (ii), (iv), (v), (vi), (viii) and (ix) of Lemma 3.1. Consider the
ideal N(.§) constructed in the proof of [12, Lemma 4.5.1]: N°(.S_‘) =0, N"Y(§)=x
S @J}OSM HllS_ 441, XJ S N* (5)}, N(§) = UN'(S). Then NN S,-1 = O(since
[V,x]# 0 for x # 0, x € S,_,). Then S/N(S§) satisfies all conclusions of Lemma
3.1, except (iii). Therefore, since S is a minimal counterexample, S = R®B
BO/D with R of type 4, or W,. Since R is generated by S_ g+1and S, we see that
R must be of type 4,. In particular S, is irreducible.

Now consider H = <S_q 1 Sy 1) Again S, is faithful on S,_, by the preceding
part and [x,S, ;]#0 for x#0, x€S_,,, (by Propositions III.1.7(i) and
I11.1.12(vi)). Then H/M(H) satisfies all conclusions of Lemma 3.1 except possbily
(iii). As S is a minimal counterexample, and g > 2 implies that dim H < dim §, we
see that H/M(H)= R ® B, + D, with R of type A, or W,. Again, since R is
generated by S__,, and §,_, we must have that R is of type 4,. And then S_, .,
must be irreducible. This concludes the proof.

5.4. COROLLARY.p t q.

PROOF. If p|g — 1, then there is a nothing to prove. So assume that p t g — 1, but
plg. Then [S__,,, S,_,] is (by Proposition 5.3) a nilpotent ideal of D,. Since S_, is
irreducible it follows from Lemma 5.2(ii) that [S__ ., S,_,] acts trivially on S_ . But
this contradicts Proposition II1.1.5(ii).

5.5. Since p t ¢ we have that S is faithful and irreducible on S_, (by Lemma
5.2(i)). By Proposition I11.1.12 the algebra & S, satisfies the conditions of M. L.
Kuznetsov [9, Theorem 5.1}. Therefore, &, S, = R® B, + §, with R simple
graded of type A4, or W, with standard grading (magnified g times). We write
R,, = ke, sothatS, =e, ® B, Wewritee,fore, ® 1.

PROPOSITION. (i) S; 1= €q® B, i # 0, are irreducible for S;
(ii) eq ® B,, is a commutative ideal of Dy,

(iii) ey is in the center of D;

(iv)eqactsasi/qonS,.

The statements (i)—(iii) are, essentially, proved in the proof of Lemma 2.1. To
prove (iv) note that e, acts as -1 on S_,. Since e, is in the center of D, it acts as a
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scalar, say A, on S_,. Therefore it acts as Ai on S;. In particular, it acts as -Ag = -1
on S_,. Thus A = 1/g, whence (iv).

5.6. ProPOSITION. () ad e_.: S, — S,,.,_, is injective for i > 0,9 > j > 0;
(iyade_,cade, = ~(¢g —j)q ' ldg  _for0 <, <gq.
(i11) ad e, S - S/ and ad e_, S/ - S-q+j* 0 <j < q, are bijective if p + (q —
Jiade,s S . — Sistrivialifp t (q — ).
(iviade,cade_,= (¢ —j)g ' 1ds if0 <j <gq.

—qt)

PROOF. Set §, = [S_,. S,]and S, = S fori # 0. We know that ad e, S,q = S 14
Is an isomorphism of vector spaces for i > 0 (as [e_,. e, ® b]=[e_,. e, J® b=
€,:-1)® b). Now take x € §,q+/. i>0,qg>j>0, and assume [e_,, x] = 0. Then
0 = (ad S_l)f[e,q, x]=[e_,(ad S_)’x]). But (ad S_;)’x # 0 if x # O and ade_, 1s
injectiveon S, , i > 0. Therfore x = 0. This proves (i).

Now for x € S_,, ., 0 <j <gq. we have [e_,[e,, x]] = [[e_,. e ]x] = [c,. x] =
—(q — j)q 'x, whence (ii). If p t (¢ — j), then since ad e_,cade (x)=—(q - g x

with (¢ — j)g~' # 0 we must have that ad e, (x) # 0; thatis, ad e, is injective. Thus

dim S, > dim S g But ad eS8 =S .. is injective as well (by (i)). so dim S, =
dimS_,, and both ade;: S ,,, — S and ade_,; S, — S_,, are biective. If

plg—jandade (x)# Oforx €S, , . thenalsoade_,(ade,(x)) # 0 (by (1)). But
ade_,cade, = Os . ifpl(g —J) This concludes the proof of (iii).

To prove (iv) first assume that p|qg — /. Then ade,: S_ . — S, is trivial so (iv)
holds. Sop + g — j. Take a basisin S, and a basisin S__, . Thenade,;: S_, . — S is
given by a matrix, say 4, and ade_, S, = S__,  is given by a matrix, say B. By (ii)
we know that BA = —(q¢ — j) - ¢! - Id. By (iii) both B and A4 are square matrices.

Therefore they are invertible and B4 = AB = —(q — 1)q ' 1d. which proves (iv).
5.7. PROPOSITION. g > 2.

PROOF. Suppose g = 2. Take x € S, and apply Proposition 5.6(iv) with j = 1.
Theng —j =1so

["2[9-2~x” = [[ez,eﬁz]x] +[e_2[ez.x]]

= —[eq, x] +[e_s[ey, x]] = ~ix +[e_,[e5. x]].

X

[

So [e_,[e,, x]] = 0. Now apply Proposition 5.6(i) with i =1, j = 1. This gives
[e,, x] = 0. Therefore [e,, S;] = 0. Now take e, ® b € S, and write e, ® b = [¢;, ®
b,e,]. Then [e, ® b, S,] = [[e, ® b, e,]S,] = [[e, ® b, S;]e;] € [S,.e,] = 0. Thus
[S,. $,]1=0.

Now S = (S|, S_,) by Lemma 5.1iii). So [S,. S,] = 0 means that S, = 0. that is
S = Q)lzs_zS,. Now Theorem II1.2.1 implies that S is classical, whence a contradic-
tion, since there are no classical graded Lie algebras with ¢ = 2 and S, solvable.

5.7.1. REMARK. It is curious that an algebra with similar properties has appeared
in [14, Theorem 2.11].

5.8. PROPOSITION. p|g — 1.
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PROOF. Suppose p + ¢ — 1. Then by Proposition 5.3 (which is applicable because
of Proposition 5.7) we have that [S_,,,, S, ,] = R ® B, is a commutative ideal /,_,
in S,. In all cases, by Proposition 5.5(i)) we see that [S_,, S ]=R,® B, is a
commutative ideal I, of S,. By Lemma 5.1(iv) we see that S, =1, + I, ,; in
particular, S, is at most two-step nilpotent.

As S, is irreducible on S__ the central ideal I = I, N I,_, acts as a scalar on S_,,.
Since S, is faithful on S_, we must have dim < 1. As both I, and I,_, contain a
central element of D, we see that dim I = 1.

Now we see that [I,, I, ;] I, N1, , =1 Therefore[,]: (I,/I) X (I,_,/I) >
I = k defines a pairing. This pairing is nondegenerate. Indeed, if say, J C I,
[J,1,_,] =0, then J is a central ideal of S, and therefore acts by scalars on S_,.
Therefore J C I. Therefore n = m, dim S, = 2p” — 1, and S, is a Heisenberg Lie
algebra.

It is known (say by [13, Theorem 1]) that all faithful irreducible representations of
a Heisenberg algebra of dimension 2d + 1 are of dimension p?. Therefore we must
have dim S_, = p#"~!. But dim S_, = p". So we have the equation p”"~! = p”, i.e,
p" — 1 = n, which is impossible.

5.9 COROLLARY. (i)q > 8;

(il) [Sq’ S-q+l] = 0;

(i) [[S,, S_,1S_ ;411 = 05

(V) [[S,, S_ V] = O for every irreducible Dy-submodule V of S,_,.

PrOOF. Since p|g — 1 and p > 7 we have (1). By Proposition 5.6(iii) (cas¢
Jj=1,plg—j) we have [e,, S_, 1] = 0. Thus 0 # {x € S |[x, S_,,,] = 0}. Sinc
S, is irreducible (by Proposition 5.5(1)), {x € S,|[x, S_,.,] = 0} = S,, whence (ii)
Now (iii) is evident since [S_,,,, S_ ] = [S_,.1, S,] = 0. Finally, (iv) holds in viev
of Lemma 5.2(ii) since [S,, S_,] is a commutative ideal of D,

5.10. Arriving at a contradiction: end of proof.

~Write So = [S,. S_,). By Corollary 5.9(iii), (iv) and Proposition 5.5(iii) we hav
[Sos Sol = [Sos S_ 4411 = [So, V] = 0 (where V is any irreducible Dj-submodule o
Sq_1)~. By Lemma 5~.1(iv), Sy = So + [S_,+1, V). The preceding equalities now giv
[So, So] = 0. Thus S is a central ideal of S,. As S, acts irreducibly on S_ it follow
that S, must act by scalars whence m = 1, i.e,, dim S_, = 1 (by Proposition 5.5(1)
Since S, is faithful on S_, (by Lemma 5.2(i) and Corollary 5.4) we have dim S, = 1.

Now [ , }: S; X S, = S, defines a pairing of S_;, and S,. This pairing i
nondegenerate since both S_, and S, are Djirreducible, where D, = Ker D|S.
(since D, = S, ® D,). Suppose that diimS_ , = n > 1. Let E,,...,E, be a basis (
S_), let F),...,F, be the dual basis of S}, and let S, = kH. Then we have [E,, F] -
8, Hand [H, E]= E,, [H, F;] = —F,. Therefore we can apply V. Kac [5, Lemma 2
or 2.3]. It says that if n > 1, S is infinite-dimensional. Thus n = 1. But the
S ,=3S,=0,ie, S is of type 4,, a contradiction with the assumption that § is
minimal counterexample.

PART II1. APPENDIX: SOME PROPERTIES OF Z - GRADED LIE ALGEBRAS
In this part we collect some results which were used in Part II and which seem

have potential for further applicability. We also include some results which seem
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go naturally with those we needed in Part II. Finally, we include a result on
“asymmetry” between depth and height of a graded Lie algebra. This simple result is
used only tangentially, but seems to be applicable and goes well with other results of
this part.

We continue to assume that k is algebraically closed of characteristic p > 5.

1. General graded Lie algebras. We start by recording for future reference a list of
different statements (compare [12]). Let G = @;_qG, be a graded Lie algebra.

gl.[G,Glc G,

g2.[1G,,G_|]=G,_,fori <O.

g3. Foranyx € G,,x # 0,i > 0, one has [x, G_;] # 0.

g4. G_, is an irreducible G;-module.

g5. G_; is a faithful G,-module.

g6. qu any x € G, x # 0, <0, one has [x, ej>OGJ] #* 0 (ie., M(G) = 0).
WesetG = &, G, + L,.0G;,G_ ]

1.1. LEMMA. If gl and g2 hold in G, then [G,,G_,] C [G,, G_/] for any i #+ 0.

PrROOF. We can assume that / > 0. Our statement is true for i = 1. Suppose it is
true for i < m. Then we have

[Gm+1’G—m—l] = [Gm+l[G—m’G—1]] c [G—m[Gm+1’G—l]] +[[Gm+l’G—m]G—l]
clG.,..G.,1+16,,G6.,1< [G,,G,].

(We used g2, the Jacobi identity, gl, and inductive assumptions.)

1.2. PROPOSITION. Suppose that gl, g2 and g3 hold in G. For V C G,, i <0, such
that [Gy,VIC V, [G.,,V]=0,set H =V, H,, =%, (@dG)H,, _ and H =
@ H]. Then H' is an ideal of G.

PrOOF. The proof of [12, Lemma 4.5.1] goes through in our case with only
notational differences and gives that H' is an ideal of G.

1.3. COROLLARY. Suppose that gl, g2, g3, g4, g5 and g6 hold in G. Then H, = G, for
i < 0. In particular:
(i) forany x € G,,x # 0,i > —q, one has [x,G_] # O;
(i) G_ 4, = X4 505a-,(adG,) -+ (ad G, )G_,,0 <j <g;
(i) G_, = [G_,[G,, G,]);
(iv) G_, is irreducible for G,,.

-q°

PrROOF. Let x € H,. Applying ad( ® ., G,) to x repeatedly we can, by g6, obtain
y € H),y # 0, > 0. Repeated application of ad G_, to y produces, by g3 and g5, a
z€ G, z+ 0. By Proposition 1.2, z € H'. Thus H’, # 0. By Proposition 1.2,
[Gy, H' ;1 € H’,. Then g4 gives H', = G_,, whence, by g2, H = G, fori < 0.

Now (i) holds for i > 0 by g3, g5. Suppose it does not hold for some i < 0. Then
we can construct H' from V = {x € G,|[x,G_,] = 0} and H] = V. Therefore V' = G,.
But then G,_, = [V, G_,] = 0. Therefore i = —q in view of g2. This proves (i).
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The right-hand side of (ii) is exactly the definition of H” ,, ;. So (ii) just says that
H!, . =G_,,; which is already established. Next we have [G_,[G ,,G,]]=
[G,[G_,. Gl By (i), with j=1, we know that [G_,,G,]=G_,,,. Thus
[G_,[G, 6] =[G, G_,. ] = G_, as required.

Suppose that G_ 4 is not irreducible. Take V C G_ o V*EG, [V,Gy] € V. Then
[V, G_,] = 0 and so V satisfies the assumptions of Proposition 1.2. Then H” = V. a

contradiction with the fact that H’ =G,

-9

1.4. PROPOSITION. Suppose that gl, g2, g3 and g6 hold in G. Assume, in addition,
thar G, is irreducible and [G_,,G,]# 0. Then for any x € G,, i > 0, one has
[x,G_,]# 0.

-q°

REMARK. The second condition, [G
Corollary 1.3(ii) or (iu1).

PROOF. Set V, = {x € G||[x,G_,] = 0}. Then V] is a G,-submodule of G,. Since
G, is irreducible and [G_, G,] # O by assumptions, we have V; = 0. Now assume by
induction that ¥V, =0 fori<m, m> 0. Let x € V, . Then 0 = [G_[G_,, x]] =
[G_,[G_y, x]}. Thus [G_}, x]C V. Since V, = 0, we have [G_, x] = 0, whence, by
g3, x =0.Thus V,, ., = 0, as claimed.

_4 G]1# 0, follows from g4 and g5 in view of

1.5. PROPOSITION. Assume that gl, g2, g3, g4, g5 and g6 hold in G. Assume, in
addition, that [G_,, x]# 0 for any x € G,_,, x # 0. Let VC G V # 0, and
[V,G,] € V. Then:

O[V.G,]=6G ;

(ii) foranyy € G_,y # 0, 0ne has [V, y] # 0;

(i) if g > 1, then for any x € G,_,, x # 0, one has [G_,[V, x]] #+ 0;

(iv) if ¢ > 1, then for any x € G,_y, x # 0, one has [V, x] # 0.

—g+ 1

Proor. First, (1) follows from Corollary 1.3(i), (iv). To prove (ii) note that
U= {ye G,|[y.V]=0} is a Gy-submodule of G_;. Corollary 1.3(i) implies that
U # G_, and then g4 implies that U = 0, whence (ii). To prove (iii) observe that
[G_,V. x]] = [V[G_,. x]]. Now [G_,, x] # 0 by assumption. Since [G_,, x] € G_,
we get (ii1) from (i1). Finally, (iv) follows directly from (iii).

1.6. LEMMA. Suppose that gl, g2, g3, g4, g5 and g6 hold in G. Assume, in addition,
that ¢ > 1 and [G_,, x] # 0 for any x € G,_,, x # 0. Let U # 0 be a G-submodule
of G,_y. Then[y, U] # O foranyy € G_,.,y # 0.

ProoF. We have [G_,,U] = G_, in view of g4 and since [G_,, U] # 0 by assump-
tion. Therefore [G_ [y, U]} = [y,[G_,. U]l = [y,G_,] and the latter is not zero by
Corollary 1.3(1).

1.7. PROPOSITION. Suppose that gl, g2, g3, g4, g5 and g6 hold in G. Assume, in
addition, that q > 1 and [G_,, x]# 0 for any x € G,_;, x # 0. Let V# 0 be a
G-submodule of G,,_ . Then:

W) [y, V]#0foranyye G .,y #+0;

() [G. GL]1 S [G . Gl +[G 4.1, V]
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PROOF. Note first that [G__, V'] # 0 by assumption. Therefore [G_,, V'] = G_; by
g4. Therefore [G_ [y, V]l = [y[G_, VI =[y.G] and now (i) follows from

Corollary 1.3(1). Next,

[61,6.,] = [G,[6.,.¥]] € [6.,16,, V1] +[[61.G_,] V]

clc

-9 Gq] + [G-qH’ V]

as asserted.

1.8. LEMMA. Suppose that gl and g2 hold in G. Let V C G, and [V, G,] C V. Set
H =G, fori<0,H =VandH,, = {x€ G |G, x]CH} i>0. Then H=
@ H, is a subalgebra of G.

Proor. We have [H,, H;] < H,,, for i, j < 0 by gl. By construction, [H,, H_;] =
[H,G_,]< H,_, for any i. Therefore, [H,, H]C H,. for any i and anyj < 0. It is
easy to check that [H,, H,] € H,. Suppose by induction that [H, H]C H,,, if
i+ j < m. Then

[H—I[H:’ Hm+1—l]] - [Hl—l’ Hm+1——1] +[HI’ Hm—-l] c Hm + Hm c Hm’
whence [H,, H,,,,_,1C€ H,,., by definition of H,, i > 0.

1.9. PROPOSITION. Suppose that gl, g2 and g3 hold in G. Assume, in addition, that
G,.1 =1Gy,G,) for i > 0. Let V be a maximal Gy-submodule of G\, and let H be the
algebra constructed from V as in Lemma 1.8. Then:

(i) H is a maximal subalgebra of G;

(ii) G,/ V is contained in every nontrivial H-submodule of G/H.

PROOF. Let us first prove (ii). Let W # 0 be an H-submodule of G/H, and let W
be its preimage in G. So W 2> H, W # H and [W, H] C W. Take x € W and let m
be the largest integer such that (ad G_;)"x ¢ H. Take y € (ad G_,)"x, y ¢ H. Write
y= @y, Then [G_,, y] <€ H,_, for all i. For i <0 we have H,= G, whence
y; € H,. For i > 1 the condition [G_,, y,] € H,_, means that y, € H, (by construc-
tion of H,). Thus y = y, mod H. Since y ¢ H it means that y, € V. Since G,/V is
irreducible it means that G, C W thatis, G,/V C W. This proves (ii).

To prove (i) take a subalgebra M D H, M # H. Then [M, H] C M, whence, by
(i), M 2 G,. Since G, , = [G,, G,] for i > 0, it means that M = G. This proves (i).

1.10. LEMMA. Assume that gl, g2, g3 and g4 hold in G. Let x be a nilpotent element
of G, (i.e, (ad x)4m %G = 0). Then x acts as i\ - 1d + (nilpotent operator) on G,.

PRrROOF. Our statement is true by assumption for i = 0. Let (see Lemma 1.1.3) m be
such that n = x”” is in the center of the universal enveloping algebra U of G,. We
extend action of G, on G to the action of U. Then n acts as a scalar, say p, on G_; by
g4. Therefore, by g2 it acts as ip. on G,, i < 0. Of course, n acts as 0 on G,,. Using g3

we establish successively that n acts as ip on all G,. Set A = p\/ﬁ . Then x acts as
iX - Id + (nilpotent operator) on G, as asserted.
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1.11. COROLLARY. Assume that gl, g2, g3, g4 and g5 hold in G. Let I be a nilpotent
ideal of G,. Then:

() ifp t i, I acts faithfully on G, and [1, V] = V for every Gy-submodule of G;

(i) 1 acts nilpotently on G, and it acts trivially on every simple G-submodule V' of
G

pr

PROOF. Since I is a nilpotent ideal of G, every element of I is a nilpotent element
of G,. By Lemma 1.10 there exists a function A: I — k such that x € I acts as
iA(x)Id + (nilpotent operator) on G,. This directly implies (ii). Let J be the kernel
of the action of I on a Gy-submodule V' € G,. Then J is a nilpotent ideal. If p + i we
see that A\(J) = 0, i.e. J acts nilpotently on G_,. Since G_, is irreducible it means that
[J, G_;] = 0 in contradiction with g5. This proves (i).

1.12. PROPOSITION. Suppose that G is simple and that gl and g2 hold in G. Then:
(1) g3, g5 and gb hold in G,

(i) Go =[Gy, G4);

(iii) G_, is irreducible for [G,, G_,);

() [G_[Gy, G,1 = G_y;

MGy, = Zaﬁo‘z‘,ﬁ,(ad G,) - (adG,)G_, fori > 0;

(i) if G, is irreducible, then x € G,,i > 0,[x, G_ q] = 0 implies that x = 0.

PrOOF. We have (ii) by Lemma 1.1. Now (iii) and (v) are contained in [12, Lemma
4.5.1(ii) and (iii)]. Again by [12, Lemma 4.5.1(i)}, g3 and g5 hold in G. If g6 does not
hold, then M(G) # 0 (see [12, §1.5]). But M(G) = O since G is simple. Thus g6
holds. This proves (i). Now Proposition 1.4 is applicable and gives (vi). Finally, we
have [G_,G_ .= G_, (by g2) and [G,, G_,l=G_,., (by (v)). Therefore
(G_ G, G 1= G, G,]G,]1=[G_ 41, G1] = G_,, whence (iv).

- q’
2. On asymmetry of graded Lie algebras. The purpose of this section is to establish

2.1. :FHEOREM. Let G = $,’=-q G,. Suppose that G satisfies g4 and g5, and that:
(a) G is simple;

(b) forany x € G,,i > 0,[x,G_ ;] = 0 implies x = 0;

(c) forany x € G,,i <0,[x,G,] = 0implies x = 0;

(d) G is generated by G, and G _,.

Then either G is a classical Lie algebra or max(q, r) > (( p — 1)/2)min(q, r).

2.1.1. REMARK. The conditions of Theorem 2.1 are satisfied if G is simple, G_, and
G, are irreducible and faithful G-modules, and G is generated by G, and G_,.
Indeed, in this case Proposition 1.12(vi) applied both to G and to G with inverted
grading gives the desired properties.

2.1.2. REMARK. The condition max(q, r) < ((p — 1)/2) max(gq, r) is equivalent to
two inequalities: 2r < pg — gand 2q < pr — r.

Indeed, these inequalities can be written as 2(r + g) < pq + ¢, 2(r + q) < pr + r.
or2(r+ q) < (p + 1)min(q, r). Butr + ¢ = max(q, r) + min(gq, r). That is,

2max(q, r) + 2min(q,r) < (p + 1) min(q, r),



ON SUBALGEBRAS OF SIMPLE LIE ALGEBRAS 501

or

max(g, r) < ((p — 1)/2) min(q, r),

as required.
2.1.3. REMARK. This part of the paper draws heavily on [14] although more in
spirit than in results.

2.2. LEMMA. (i) If 2r < pm — q, m > 0, thenexpad G_ , j > m, exists and consists
of automorphisms of G.

(i) If 29 < pn —r, n > 0, then expad G, j > n, exists and consists of automor-
phisms of G.

PROOF. We prove only (i), as (ii) is proved in the same way. For expad G_, to
exists one must have (adG_))? = 0. But (adG_,)?G C &,G,_,,. Since j > m, we
have 2r < pj — g,i.e,r — pj < -r — g < —q, whence & G,_, = 0.

Next, in view of [14, Lemma 1.2] we know that exp ad x is an automorphism if
h,.=[(ad x)°y,(ad x)#z]=0forally, z€ G,a + B> p. Take xEG_, y € G,,
2€G,a+ B>p Then h,g € G_joipyss+, But J(a+B)+s+t<-mp+2r
< -q, whence h 5 = 0. This concludes the proof of (i).

2.3. PROPOSITION. Suppose that G has no center and 2r < pm — q, 2q < pn — r
with m > 0, n > 0. Then the subalgebra H of G generated by H, = & __ G, and
H, = o, G, is, modulo its radical, a direct sum of simple classical Lie al\gebras (we
say simply: classical). Moreover, if Nilrad H is the maximal ideal of H acting
nilpotently on G then H/Nilrad H has only central radical and H /Nilrad H coincides

with its derived algebra.

PROOF. Since G has no center we have an imbedding ad: G — Der G. We identify
subsets of G with their images under ad. Consider the subgroup J of Aut G
generated by exp ad H, and exp ad H, (meaningful by Lemma 2.2). For the Lie
algebra of 5, Lie ¥, we have Lie #C Der G and Lie s#2 H, ® H,. Therefore
Lie 5#2 H. Clearly, H is stable under s# and therefore H is an ideal of Lie 5. Let #”
be the unipotent radical of 5#. Then /.4 is reductive and generated by unipotent
subgroups exp ad H,(mod A4"), i = 1, 2. Therefore #/.4"is semisimple. Write 5¢/.4"as
an almost direct product of factors &, such that all simple factors of .%, are of the
same type. Write S, = Lie %,. If simple factors of an %, are not of type 4 ,,_, then S,
is a direct sum of simple Lie algebras. Otherwise S, may have center and may be
distinct from their derived algebras. However, since S, N H/(H N Lie A") is gener-
ated by nilpotent elements, we always have that S, " H/(H N Lie #") coincides
with its derived algebra. Since H N Lie A4 is an ideal of H which acts nilpotently on
G, our proposition is proven.

2.4, COROLLARY. Take assumptions and notation of Proposition 2.3 and assume, in
addition, that H is not nil. Then ¢ > n,r > m.

PROOF. Let 7 be the one-dimensional subtorus of Aut G defining the grading of G
(see [12, §1.4]). Then I normalizes H and . Since  preserves Nilrad H, it acts on
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H /Nilrad H. By condition H/Nilrad H # 0, it is classical. But in a classical Lie
algebra any Z-grading is symmetric (i.e., it has height equal to depth). Since
H /Nilrad H is generated by images of H, = ® " G.H,=@&] G, this implies
thatg > n,r > m.

2.5. LEMMA. Take assumptions of Theorem 2.1. Then the subalgebra H of G
generated by G_, and G, is not nil.

PROOF. Suppose it is. Let 7 be the one-dimensional torus defining the grading of
G. Since H is invariant under . so is its center C. So C = & C,. By conditions (b)
and (c) of Theorem 2.1 we have that C = C,, i.e,, C € G,. But then C is an ideal of
G, Since the action of C on G is nilpotent and in view of g4 and g5 we have C = 0,
a contradiction, since a nilpotent algebra must have a nontrivial center.

2.6. PrROOF OF THEOREM 2.1. Suppose max(q,r) < ((p — 1)/2)min(q, r). By
Remark 2.1.2 this is equivalent to 2r < pq — q, 2q < pr — r. By Lemma 2.5 we
know that H = < G,q,G,> is not nil. Therefore we can apply Corollary 2.4 with
m=gq,n=rltgivesusqg > r,r > q; thatis,qg = r.

If g =1 then we are done by Proposition 2.3 (since H = G is simple). If ¢ > 2,
we consider H, =G_,® G_,,, and H, =G, ® G,_,. We have p(¢ - 1)—¢g =
(p—1g—p>2qif p>7(and also if ¢ > 2, p > 5). Therefore we can apply
Proposition 2.3 (with m =n=g—1). In this case H = (H,, H,) contains
6.4 Gyal= G, 16,6411 =G, a.md since G is generated by G, and G_, we have
H = G. So Proposition 2.3 says that G is classical.
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